Residual Stress and Strain

Blood vessels are known to retract both longitudinally and circumferentially after excision. This retraction is caused by the relief of distending forces resulting from internal pressure and longitudinal tractions. The magnitude of retraction is influenced by several factors. Among these factors are growth, aging, and hypertension. Circumferential retraction of medium-caliber blood vessels, such as the carotid, iliac, and bracheal arteries, can exceed 70% following reduction of internal blood pressure to zero. In the case of the carotid artery, the amount of longitudinal retraction tends to increase during growth and to decrease in subsequent aging [5]. It would seem reasonable to assume that blood vessels are in a nearly stressfree state when they are fully retracted and free of external loads. This configuration also seems to be a reasonable choice for the reference configuration. However, this ignores residual stress and strain effects that have been the subject of current research [4, 11-14, 16].

Blood vessels are formed in a dynamic environment which gives rise to imbalances between the forces that tend to extend the diameter and length and the internal forces that tend to resist the extension. This imbalance is thought to stimulate the growth of elastin and collagen and to effectively reduce the stresses in the underlying tissue. Under these conditions it is not surprising that a residual stress state exists when the vessel is fully retracted and free of external tractions. This process has been called remodeling [11]. Striking evidence of this remodeling is found when a cylindrical slice of the fully retracted blood vessel is cut longitudinally through the wall. The cylinder springs open, releasing bending stresses kept in balance by the cylindrical geometry [16].

Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook


Post a comment