1. Blommaart EFC, Luiken JJFP, Meijer AJ. Autophagic proteolysis: Control and specificity. Histochem J 1997; 29:365-85.

2. Kominami E, Hashida S, Khairallah EA et al. Sequestration of cytoplasmic enzymes in an autophagic vacuole-lysosomal system induced by injection of leupeptin. J Biol Chem 1983; 258:6093-100.

3. Kopitz J, Kisen G0, Gordon PB et al. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 1990; 111:941-53.

4. Schworer CM, Mortimore GE. Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci USA 1979; 76:3169-3173.

5. Pfeifer U. Inhibition by insulin of the formation of autophagic vacuoles in rat liver. J Cell Biol 1978; 78:152-67.

6. Mortimore GE, Pösö AR, Lardeux BR. Mechanism and regulation of protein degradation in liver. Diabetes Metab Rev 1989; 5:49-70.

7. Botbol V, Scornik OA. Measurement of instant rates of protein degradation in the livers of intact mice by the accumulation of bestatin-induced peptides. J Biol Chem 1991; 266:2151-2157.

8. Mortimore GE, Hutson NJ, Surmacz CA. Quantitative correlation between proteolysis and macro-and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci USA 1983; 80:2179-2183.

9. Furuno K, Ishikawa T, Akasaki K et al. Immunocytochemical study of the surrounding envelope of autophagic vacuoles in cultured rat hepatocytes. Exp Cell Res 1990; 189:261-268.

10. Dunn Jr WA. Studies on the mechanism of autophagy: Formation of the autophagic vacuole. J Cell Biol 1990; 110:1923-1933.

11. Yokota S. Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate. Eur J Cell Biol 1993; 61:67-80.

12. Yamamoto A, Masaki R, Fukui Y et al. Absence of cytochrome P-450 and presence of autolysosomal membrane antigens on the isolation membranes and autophagosomal membranes in rat hepato-cytes. J Histochem Cytochem 1990; 38:1571-1581.

13. Yamamoto A, Masaki R, Tashiro Y. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J Histochem Cytochem 1990; 38:573-580.

14. Fengsrud M, Roos N, Berg T et al. Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res 1995; 221:504-519.

15. Ishihara N, Hamasaki M, Yokota S et al. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 2001; 12:3690-3702.

16. Kihara A, Kabeya Y, Ohsumi Y et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001; 2:330-335.

17. Kihara A, Noda T, Ishihara N et al. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 2001; 152:519-530.

18. Dunn Jr WA. Studies on the mechanism of autophagy: Maturation of the autophagic vacuole. J Cell Biol 1990; 110:1935-1945.

19. Schwartz AL, Brandt RA, Geuze H et al. Stress-induced alteration in autophagic pathway: relationship to ubiquitin system. Am J Physiol 1992; 262:C1031-C1038.

20. Ichimura Y, Kirisako T, Takao T et al. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408:488-492.

21. Seglen PO, Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia 1992; 48:158-172.

22. H0yvik H, Gordon PB, Berg TO et al. Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine. J Cell Biol 1991; 113:1305-1312.

23. Luiken JJFP, Aerts JMFG, Meijer AJ. The role of the intralysosomal pH in the control of autophagic proteolytic flux in rat hepatocytes. Eur J Biochem 1996; 235:564-573.

24. Pösö AR, Mortimore GE. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver. Proc Natl Acad Sci USA 1984; 81:4270-4274.

25. Mortimore GE, Wert Jr JJ, Adams CE. Modulation of the amino acid control of hepatic protein degradation by caloric deprivation. Two modes of alanine coregulation. J Biol Chem 1988; 263:19545-19551.

26. Mortimore GE, Khurana KK, Miotto G. Amino acid control of proteolysis in perfused livers of synchronously fed rats. Mechanism and specificity of alanine coregulation. J Biol Chem 1991; 266:1021-1028.

27. Seglen PO, Gordon PB. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. J Cell Biol 1984; 99:435-444.

28. Leverve XM, Caro LH, Plomp PJ et al. Control of proteolysis in perfused rat hepatocytes. FEBS Lett 1987; 219:455-458.

29. Caro LH, Plomp PJ, Leverve XM et al. A combination of intracellular leucine with either glutamate or aspartate inhibits autophagic proteolysis in isolated rat hepatocytes. Eur J Biochem 1989; 181:717-720.

30. Shinnick FL, Harper AE. Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta 1976; 437:477-486.

31. Blommaart PJE, Zonneveld D, Meijer AJ et al. Effects of intracellular amino acids concentrations, cyclic AMP, and dexamethasone on lysosomal proteolysis in primary cultures of perinatal rat hepa-tocytes. J Biol Chem 1993; 268:1610-1617.

32. Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J 1996; 313:697-710.

33. Meijer AJ. Hepatocyte swelling. In: Berry MN, Edwards AM, eds. The hepatocyte review. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000:147-167.

34. Meijer AJ, Gustafson LA, Luiken JJ et al. Cell swelling and the sensitivity of autophagic proteolysis to inhibition by amino acids in isolated rat hepatocytes. Eur J Biochem 1993; 215:449-454.

35. Luiken JJFP, Blommaart EFC, Boon L et al. Cell swelling and the control of autophagic proteoly-sis in hepatocytes: involvement of phosphorylation of ribosomal protein S6. Biochem Soc Trans 1994; 22:508-511.

36. Fosse H, Berg TO, Oreilly DSJ et al. Vanadate inhibition of hepatocytic autophagy -calcium-modulated and osmolality-modulated antagonism by asparagine. Eur J Biochem 1995; 230:17-24.

37. Hallbrucker C, vom Dahl S, Lang F et al. Control of hepatic proteolysis by amino acids. The role of cell volume. Eur J Biochem 1991; 197:717-724.

38. Meijer AJ. Inhibition of autophagic proteolysis by cell swelling in hepatocytes. Biochem J 1995; 312:987-988.

39. vom Dahl S, Häussinger D. Cell hydratation and proteolysis control in liver. Biochem J 1995; 312:988-989.

40. vom Dahl S, Stoll B, Gerok W et al. Inhibition of proteolysis by cell swelling in the liver requires intact microtubular structures. Biochem J 1995; 308:529-536.

41. vom Dahl S, Dombrowski F, Schmitt M et al. Cell hydratation controls autophagosome formation in rat liver in a microtubule-dependent way downstream from p38MAPK activation. Biochem J 2001; 354:31-36.

42. Holen I, Gordon PB, Seglen PO. Protein kinase-dependent effects of okadaic acid on hepatocytic autophagy and cytoskeletal integrity. Biochem J 1992; 284:633-636.

43. Holen I, Gordon PB, Seglen PO. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur J Biochem 1993; 215:113-122.

44. Holen I, Stromhaug PE, Gordon PB et al. Inhibition of autophagy and multiple steps in asialoglycoprotein endocytosis by inhibitors of tyrosine protein kinases (tyrphostins). J Biol Chem 1995; 270:12823-12831.

45. Tischler ME, Desautels M, Goldberg AL. Does leucine, leucyl-tRNA, or some metabolite of leu-cine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 1982; 257:1613-1621.

46. Blommaart EFC, Luiken JJFP, Blommaart PJE et al. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995; 270:2320-2326.

47. Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 1999; 253:100-109.

48. Dennis PB, Fumagalli S, Thomas G. Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr Opin Genet Dev 1999; 9:49-54.

49. Raught B, Gingras AC, Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 2001; 98:7037-7044.

50. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998; 273:3963-3966.

51. Kamada Y, Funakoshi T, Shintani T et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 2000; 150:1507-1513.

52. Tanaka K, Ichihara A. Different effect of amino acid deprivation on synthesis of intra and extracellular proteins in rat hepatocytes in primary culture. J Biochem (Tokyo) 1983; 94:1339-1348.

53. van Sluijters DA, Dubbelhuis PF, Blommaart EFC et al. Amino-acid-dependent signal transduc-tion. Biochem J 2000; 351:545-550.

54. Dubbelhuis PF, Meijer AJ. Amino acid-dependent signal transduction. In: Storey KB, Storey JM, eds. Cell and molecular response to stress. Amsterdam: Elsevier; 2002; 3:207-219.

55. Shigemitsu K, Tsujishita Y, Hara K et al. Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways - Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem 1999; 274:1058-1065.

56. Hara K, Yonezawa K, Weng QP et al. Amino acid sufficiency and mTOR regulate p70S6 kinase and eIF-4E BP1 through a common effcetor mechanism. J Biol Chem 1998; 273:14484-14494.

57. Patti ME, Brambilla E, Luzi L et al. Bidirectional modulation of insulin action by amino acids. J Clin Invest 1998; 101:1519-1529.

58. Krause U, Rider MH, Hue L. Protein kinase signaling pathway triggered by cell swelling and involved in the activation of glycogen synthase and acetyl-CoA carboxylase in isolated rat hepato-cytes. J Biol Chem 1996; 271:16668-16673.

59. Peyrollier K, Hajduch E, Blair AS et al. L-leucine availability regulates phosphatidylinositol 3-ki-nase, p70 S6 kinase and glycogen synthase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport. Biochem J 2000; 350:361-368.

60. Blommaart EFC, Krause U, Schellens JPM et al. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997; 243:240-246.

61. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15:807-826.

62. Wang X, Li W, Williams M et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001; 20:4370-4379.

63. Tang H, Hornstein E, Stolovich M et al. Amino acid-induced translation of TOP mRNA is fully inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 2001; 21:8671-8683.

64. Peterson RT, Desai BN, Hardwick JS et al. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycin associated protein. Proc Natl Acad Sci USA 1999; 96:4438-4442.

65. Navé BT, Ouwens M, Withers DJ et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999; 344:427-431.

66. Westphal RS, Coffee Jr RL, Marotta A et al. Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase kinase-PP2A. J Biol Chem 1999; 274:687-692.

67. Blankson H, Holen I, Seglen PO. Disruption of the cytokeratin cytoskeleton and inhibition of hepatocytic autophagy by okadaic acid. Exp Cell Res 1995; 218:522-530.

68. Miotto G, Venerando R, Marin O et al. Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptide Leu8-Lys4-Lys2-Lys-ßAla. J Biol Chem 1994; 269:25348-25353.

69. Lynch CJ, Fox HL, Vary TC et al. Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J Cell Biochem 2000; 77:234-251.

70. Iiboshi Y, Papst PJ, Kawasome H et al. Amino acid-dependent control of p70s6k. Involvement of tRNA aminoacylation in the regulation. J Biol Chem 1999; 274:1092-1099.

71. Christie GR, Hajduch E, Hundal HS et al. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70S6 kinase in a TOR-dependent manner. J Biol Chem 2002; 277:9952-9957.

72. Dennis PB, Jaeschke A, Saitoh M et al. mammalian TOR: a homeostatic ATP sensor. Science 2001; 294:1102-1105.

73. Natarajan K, Meyer MR, Jackson BM et al. Transcription profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 2001; 21:4347-4368.

74. Talloczy Z, Jiang W, Virgin IV HW et al. Regulation of starvation- and virus-induced autophagy by the eIF2a kinase signaling pathway. Proc Natl Acad Sci USA 2002; 99:190-195.

75. Scornik OA. Faster protein degradation in response to decreased steady state levels of amino acyla-tion of tRNAHis in Chinese hamster ovary cells. J Biol Chem 1983; 258:882-886.

76. Pham PT, Heydrick SJ, Fox HL et al. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes. J Cell Biochem 2000; 79:427-441.

77. Grinde B, Seglen PO. Effects of amino acid analogues on protein degradation in isolated rat hepa-tocytes. Biochim Biophys Acta 1981; 676:43-50.

78. Plomp PJ, Wolvetang EJ, Groen AK et al. Energy dependence of autophagic protein degradation in isolated rat hepatocytes. Eur J Biochem 1987; 164:197-203.

79. Schellens JPM, Vreeling-Sindelarova H, Plomp PJAM et al. Hepatic autophagy and intracellular ATP. A morphometric study. Exp Cell Res 1988; 177:103-108.

80. Plomp PJA, Gordon PB, Meijer AJ et al. Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem 1989; 264:6699-6704.

81. Ohshita T. Suppression of autophagy by ethionine administration in male rat liver in vivo. Toxicology 2000; 147:51-57.

82. Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998; 67:821-855.

83. Kovacs AL, Gordon PB, Grotterod EM et al. Inhibition of hepatocytic autophagy by adenosine, adenosine analogs and AMP. Biol Chem 1998; 379:1341-1347.

84. Samari HR, Seglen PO. Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N-6-mercaptopurine riboside - Evidence for involvement of AMP-activated protein kinase. J Biol Chem 1998; 273:23758-23763.

85. Dubbelhuis PF, Meijer AJ. Hepatic amino acid-dependent signaling is under the control of AMP-dependent protein kinase. FEBS Lett 2002; 521:39-42.

86. Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci USA 2002; 99:4319-4324.

87. Harada H, Andersen JS, Mann M et al. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 2001; 98:9666-9670.

88. Schnaitman C, Greenawalt JW. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol 1968; 38:158-175.

89. Wang Z, Wilson WA, Fujino MA et al. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 2001; 21:5742-5752.

90. Petiot A, Ogier-Denis E, Blommaart EFC et al. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275:992-998.

91. Seglen PO, Gordon PB. 3-methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 1982; 79:1889-1892.

92. Petritsch C, Woscholski R, Edelman HM et al. Activation of p70 S6 kinase and fr^-encoded mitogen-activated protein kinase is resistant to high cyclic nucleotide levels in Swiss 3T3 fibro-blasts. J Biol Chem 1995; 270:26619-26625.

93. Holen I, Gordon PB, Stromhaug PE et al. Role of cAMP in the regulation of hepatocytic autoph-agy. Eur J Biochem 1996; 236:163-170.

94. Katso R, Okkenhaug K, Ahmadi K et al. Cellular function of phosphoinositide 3-kinases: Implications for development, immunity, homeostasis, and cancer. Annu Rev Cell Dev. Biol 2001; 17:615-675.

95. Vanhaesebroeck B, Leevers SJ, Panayotou G et al. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 1997; 22:267-272.

96. De Camilli P, Emr SD, McPherson PS et al. Phosphoinositides as regulators in membrane traffic. Science 1996; 271:1533-1539.

97. Toker A, Cantley LC. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 1997; 387:673-676.

98. Wurmser AE, Gary JD, Emr SD. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J Biol Chem 1999; 274:9129-9132.

99. Gillooly DJ, Simonsen A, Stenmark H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J 2001; 355:249-258.

100. Stephens L, Smrcka A, Cooke FT et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein ßy subunits. Cell 1994; 77:83-93.

101. Stoyanov B, Volinia S, Hanck T et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 1995; 269:690-692.

102. MacDouglas LK, Domin J, Waterfield MD. A family of phosphoinositide 3-kinases in Drosophila identifies a new mediator of signal transduction. Curr Biol 1995; 5995:1404-1414.

103. Molz L, Chen YW, Hirano M et al. Cpk is a novel class of Drosophila PtdIns 3-kinase containing a C2 domain. J Biol Chem 1996; 271:13892-13899.

104. Virbasius JV, Guilherme A, Czech MP. Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain. J Biol Chem 1996; 271:13304-13307.

105. Schu PV, Takegawa K, Fry MJ et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993; 260:88-91.

106. Stack JH, Herman PK, Schu PV et al. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3'-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 1993; 12:2195-2204.

107. Panaretou C, Domin J, Cockcroft S et al. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. J Biol Chem 1997; 272:2477-2485.

108. Stasyk OV, van der Klei IJ, Bellu AR et al. A Pichia pastoris VPS15 homologue is required in selective peroxisome autophagy. Curr Genet 1999; 36:262-269.

109. Kiel JAKW, Rechinger KB, van der Klei IJ et al. The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p. Yeast 1999; 15:741-754.

110. Liang XH, Jackson S, Seaman M et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402:672-676.

111. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001; 26:657-664.

112. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000; 346:561-576.

113. Arico S, Petiot A, Bauvy C et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2001; 276:35243-35246.

114. Rohde J, Heitman J, Cardenas ME. The TOR kinases link nutrient sensing to cell growth. J Biol Chem 2001; 276:9583-9586.

115. Laporte J, Blondeau F, Buj-Bello A et al. The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet 2001; 17:221-228.

116. Maehama T, Taylor GS, Dixon JE. PTEN and myotubularin: Novel phosphoinositide phosphatases. Annu Rev Biochem 2001; 70:247-279.

117. Maehama T, Dixon JE. The tumor suppresor PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-triphosphate. J Biol Chem 1998; 273:13375-13378.

118. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000;100:387-390.

119. Kim S-A, Taylor GS, Torgersen KM et al. Myotubularin and MTMR2, phosphatidylinositol 3-phos-phatases mutated in myotubular myopathy and type 4B Charcot-Marie-Tooth disease. J Biol Chem 2002; 277:4526-4531.

120. Blondeau F, Laporte J, Bodin S et al. Myotubularin, a phosphatase deficient in myotubular my-opathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 2000; 9:2223-2229.

121. Bolino A, Muglia M, Conforti FL et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 2000; 25:17-19.

122. Walker DM, Urbe S, Dove SK et al. Characterization of MTMR3: an inositol lipid 3-phosphatase with novel substrate specificity. Curr Biol. 2001; 11:1600-1605.

123. Wu Y, Dowbenko D, Pisabarro MT et al. PTEN2, a Golgi-associated testis-specific homologue of the PTEN tumor suppressor lipid phosphatase. J Biol Chem 2001; 276:21745-21753.

124. Walker SM, Downes CP, Leslie NR. TPIP: a novel phosphoinositide 3-phosphatase. Biochem J 2001; 360:277-283.

125. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987; 56:615-649.

126. Birnbaumer L, Abramowitz J, Brown AM. Receptor-effector coupling by G proteins. Biochim Biophys Acta 1990; 1031:163-224.

127. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991; 349:117-127.

128. Clapham DE, Neer EJ. New roles for G protein ßy dimers in transmembrane signaling. Nature

1993; 365:403-406.

129. Schwaninger R, Plutner H, Bokoch GM et al. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes. J Cell Biol 1992; 119:1077-1096.

130. Wilson BS, Palade GE, Farquhar MG. Endoplasmic Reticulum-Through-Golgi transport assay based on O-Glycosylation of native glycophorin in permeabilized erythroleukemia cells - role for Gi3. Proc Natl Acad Sci USA 1993; 90:1681-1685.

131. Stow JL, de Almeida JB, Narula N et al. A heterotrimeric G protein, Gai.3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. J Cell Biol 1991; 114:1113-1124.

132. Barr FA, Leyte A, Moller S et al. Trimeric G-proteins of the trans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules. FEBS Lett 1991; 294:239-243.

133. Aridor M, Rajmemilevich G, Beaven MA et al. Activation of exocytosis by the heterotrimeric G protein Gi3. Science 1993; 262:1569-1572.

134. Vitale N, Mukai H, Rouot B et al. Exocytosis in chromaffin cells. Possible involvement of the heterotrimeric GTP-binding protein Go. J Biol Chem 1993; 268:14715-14723.

135. Carter LL, Redelmeier TE, Woollenweber LA et al. Multiple GTP-binding proteins participate in clathrin-coated vesicle-mediated endocytosis. J Cell Biol 1993; 120:37-45.

136. Colombo MI, Mayorga LS, Casey PJ et al. Evidence of a role for heterotrimeric GTP binding proteins in endosome fusion. Science 1992; 255:1695-1697.

137. Pimplikar SW, Simons K. Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature 1993; 362:456-458.

138. Bomsel M, Mostov KE. Possible role of both the a and ßy subunits of the heterotrimeric G protein, Gs, in transcytosis of the polymeric immunoglobulin receptor. J Biol Chem 1993; 268:25824-25835.

139. Kadowaki M, Venerando R, Miotto G et al. De novo autophagic vacuole formation in hepatocytes permeabilized by staphylococcus-aureus a-toxin. Inhibition by nonhydrolyzable GTP analogs. J Biol Chem 1994; 269:3703-3710.

140. Ogier-Denis E, Couvineau A, Maoret JJ et al. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem 1995; 270:13-16.

141. Ogier-Denis E, Houri JJ, Bauvy C et al. Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J Biol Chem 1996; 271:28593-28600.

142. Petiot A, Ogier-Denis E, Bauvy C et al. Subcellular localization of the Gai3 protein and G alpha interacting protein, two proteins involved in the control of macroautophagy in human colon cancer HT-29 cells. Biochem J 1999; 337:289-295.

143. Klausner RD, Donaldson JG, Lippincott-Schwartz J. Brefeldin-A - Insights into the control of membrane traffic and organelle structure. J Cell Biol 1992; 116:1071-1080.

144. Ogier-Denis E, Bauvy C, Houri JJ et al. Evidence for a dual control of macroautophagic sequestration and intracellular trafficking of N-linked glycoproteins by the trimeric Gi3 protein in HT-29 cells. Biochem Biophys Res Commun 1997; 235:166-170.

145. Purhonen P, Pursiainen K, Reunanen H. Effects of brefeldin A on autophagy in cultured rat fibro-blasts. Eur J Cell Biol 1997; 74:63-67.

146. Donaldson JG, Finazzi D, Klausner RD. Brefeldin-A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 1992; 360:350-352.

147. Helms JB, Rothman JE. Inhibition by brefeldin-A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 1992; 360:352-354.

148. De Vries L, Mousli M, Wurmser A et al. GAIP, a protein that specifically interacts with the trimeric G protein Gai3, is a member of a protein family with a highly conserved core domain. Proc Natl Acad Sci USA 1995; 92:11916-11920.

149. Berman DM, Gilman AG. Mammalian RGS proteins: Barbarians at the gate. J Biol Chem 1998; 273:1269-1272.

150. Dohlman HG, Thorner J. RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem 1997; 272:3871-3874.

151. Koelle MR. A new family of G-protein regulators - The RGS proteins. Curr Opin Cell Biol 1997; 9:143-147.

152. De Vries L, Zheng B, Fischer T et al. The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 2000; 40:235-271.

153. Ogier-Denis E, Petiot A, Bauvy C et al. Control of the expression and activity of the Ga-interacting protein (GAIP) in human intestinal cells. J Biol Chem 1997; 272:24599-24603.

154. Houri JJ, Ogier-Denis E, De Stefanis D et al. Differentiation-dependent autophagy controls the fate of newly synthesized N-linked glycoproteins in the colon adenocarcinoma HT-29 cell line. Biochem J 1995; 309:521-527.

155. Ogier-Denis E, Pattingre S, El Benna J et al. Erk1/2-dependent phosphorylation of Ga-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem 2000; 275:39090-39095.

155a.Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 2003; 28:16667-16674.

156. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000;351:289-305.

157. Abraham D, Podar K, Pacher M et al. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 2000; 275:22300-22304.

158. Siderovski DP, Diverse-Perluissi M, De Vries L. The GoLoco motif: a Gai/o binding motif and potential guanine-nucleotide-exchange factor. Trends Biochem Sci 1999; 24:340-341.

159. Cismowski MJ, Takesono A, Bernard ML et al. Receptor-independent activators of heterotrimeric G-proteins. Life Sciences 2001; 68:2301-2308.

160. Natochin M, Gasimov KG, Artemyev NO. Inhibition of GDP/GTP exchange on Ga subunits by proteins containing G-protein regulatory motifs. Biochemistry 2001; 40:5322-5328.

161. Takesono A, Cismowski MJ, Ribas C et al. receptor-independent activators of heterotrimeric G-protein signaling pathway. J Biol Chem 1999; 274:33202-33205.

162. Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 1999; 21:932-939.

163. Peterson YK, Bernard ML, Ma HZ et al. Stabilization of the GDP-bound conformation of Gia by a peptide derived from the G-protein regulatory motif of AGS3. J Biol Chem 2000; 275:33193-33196.

164. De Vries L, Fischer T, Tronchere H et al. Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gai subunits. Proc Natl Acad Sci USA 2000; 97:14364-14369.

164a.Pattingre S, De Vries L, Bauvy C et al. The G-protein regulator AGS3 controls an early event during macroautophagy in human intestinal HT-29 cells. J Biol Chem 2003; 278:20995-21002.

165. Pizzinat N, Takesono A, Lanier SM. Identification of a truncated form of the G-protein regulator AGS3 in heart that lacks the tetratricopeptide repeat domains. J Biol Chem 2001; 276:16601-16610.

166. Lin P, LeNiculescu H, Hofmeister R et al. The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J Cell Biol 1998; 141:1515-1527.

167. Lin P, Yao Y, Hofmeister R et al. Overexpression of CALNUC (Nucleobindin) increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. J Cell Biol 1999; 145:279-289.

168. Weiss TS, Chamberlain CE, Takeda T et al. Gai3 binding to calnuc on Golgi membranes in living cells monitored by fluorescence resonance energy transfer of green fluorescent protein fusion proteins. Proc Natl Acad Sci USA 2001; 98:14961-14966.

169. Ballif BA, Mincek NV, Barratt JT et al. Interaction of cyclo oxygenases with an apoptosis- and autoimmunity-associated protein. Proc Natl Acad Sci USA 1996; 93:5544-5549.

170. Gordon PB, Holen I, Fosse M et al. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 1993; 268:26107-26112.

171. Chavrier P, Goud B. The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol 1999; 11:466-475.

172. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2:107-117.

173. Mesa R, Salomon C, Roggero M et al. Rab22a affects the morphology and function of the endocytic pathway. J Cell Sci 2001; 114:4041-4049.

174. Olkkonen VM, Dupree P, Killish I et al. Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily. J Cell Sci 1993; 106:1249-1261.

175. Munafo DB, Colombo MI. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 2002; 3:472-482.

176. Erdman RA, Shellenberger KE, Overmeyer JH et al. Rab24 is an atypical member of the Rab GTPase family. Deficient GTPase activity, GDP dissociation inhibitor interaction, and prenylation of Rab24 expressed in cultured cells. J Biol Chem 2000; 275:3848-3856.

177. Mayer A, Wickner W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J Cell Biol 1997; 136:307-317.

178. Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 1996; 272:227-234.

179. Darsow T, Rieder SE, Emr SD. A multispecificity syntaxin homologue, Vam3p, essential for au-tophagic and biosynthetic protein transport to the vacuole. J Cell Biol 1997; 138:517-529.

180. Sato TK, Darsow T, Emr SD. Vam7p, a SNAP-25-like molecule, and Vamp3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol Cell Biol 1998; 18:5308-5319.

181. Klionsky DT, Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:1-32.

182. Drees BL, Sundin B, Brazeau E et al. A protein interaction map for cell polarity development. J Cell Biol 2001; 154:549-571.

183. Price LS, Collard JG. Regulation of the cytoskeleton by Rho-family GTPases: implication for tumour cell invasion. Semin Cancer Biol 2001; 11:167-173.

184. Ridley AJ. Rho proteins: linking signaling with membrane trafficking. Traffic 2001; 2:303-310.

185.Veenhuis M, Douma A, Osumi WH. Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol 1983; 134:193-203.

186. Bergamini E, De Tata V, Cubeddu TL et al. Increased degradation in rat liver induced by antilipolytic agents: a model for studying autophagy and protein degradation in liver? Exp Mol Pathol 1987; 46:114-122.

187. Luiken JJFP, Vandenberg M, Heikoop JC et al. Autophagic degradation of peroxisomes in isolated rat hepatocytes. FEBS Lett 1992; 304:93-97.

188. Heikoop JC, Vandenberg M, Strijland A et al. Turnover of peroxisomal vesicles by autophagic proteolysis in cultured fibroblasts from Zellweger patients. Eur J Cell Biol 1992; 57:165-171.

189. Yokota S, Himeno M, Kato K. Degradation of excess peroxisomes by cellular autophagy: immuno-cytochemical and biochemical analysis. Acta Histochem Cytochem 1994; 27:573-579.

190. Kondo K, Makita T. Inhibition of peroxisomal degradation by 3-methyladenine (3MA) in primary cultures of rat hepatocytes. Anat Record 1997; 247:449-554.

191. Serafini B, Stefanini S, Ceru MP et al. Lysosomal involvement in the removal of clofibrate-induced rat liver peroxisomes. A biochemical and morphological analysis. Biol Cell 1998; 90:229-237.

192. Masaki R, Yamamoto A, Tashiro Y. Cytochrome P-450 and NADPH-cytochrome P-450 reductase are degraded in the autolysosomes in rat liver. J Cell Biol 1987; 104:1207-1215.

193. Lardeux BR, Mortimore GE. Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy. J Biol Chem 1987; 262:14514-14519.

194. Tanner AJ, Dice JF. Batten disease and mitochondrial pathways of proteolysis;. Biochem Mol Med 1996; 57:1-9.

195. Lemasters JJ, Nieminen AL, Qian T et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1998; 1366:177-196.

196. Elmore SP, Qian T, Grissom SF et al. The mitochondrial permeability transition initiates autoph-agy in rat hepatocytes. FASEB J 2001; 15:U58-U74.

197. Xue L, Fletcher GC, Tolkovsky AM. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 2001; 11:361-365.

198. Trost LC, Lemasters JJ. The mitochondrial permeability transition: a new pathophysiological mechanism for Reye's syndrome and toxic liver injury. J Pharmacol Exp Ther 1996; 278:1000-1005.

199. Partin JC, Schubert WK, Partin JS. Mitochondrial ultrastructure in Reye's syndrome in mice. N Engl J Med 1971; 285:1339-1343.

200. Woodfin BM, Davis LE. Liver autophagy in the influenza B virus model of Reye's syndrome in mice. J Cell Biochem 1986; 31:271-275.

201. Kroemer G. Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 1999; 66:1-15.

202. Kent G, Minick OT, Volini FI et al. Autophagic vacuoles in human red cells. Am J Pathol 1966; 48:831-857.

203. Takano-Ohmuro H, Mukaida M, Kominami E et al. Autophagy in embryonic erythroid cells: its role in maturation. Eur J Cell Biol 2000; 79:759-764.

204. Holm TM, Braun A, Trigatti BL et al. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood 2002; 99:1817-1824.

205. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290:1717-1721.

206. Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 1999; 6:508-515.

207. Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 2001;8:569-581.

208. Stein RC, Waterfield MD. PI3-kinase inhibition: a target for drug development? Mol Med Today 2000; 6:347-357.

209. Vogt PK. PI 3-kinase, mTOR, protein synthsis and cancer. Trends Mol Med 2001; 7:482-484.

210. Weaver SA, Ward SG. Phosphoinositide 3-kinase in the gut: a link between inflammation and cancer? Trends Mol Med 2001; 7:455-462.

211. Testa J, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 2001; 98:10983-10985.

212. Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin response? J Cell Sci 2001; 114:2903-2910.

213. Chi S, Kitanaka C, Noguchi K et al. Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cell. Oncogene 1999; 18:2281-2290.

Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook

Post a comment