References

1. Heneen, W. K. 1970. In situ analysis of normal and abnormal patterns of the mitotic apparatus in cultured rat-kangaroo cells. Chromosoma. 29:88-117.

6. Nigg, E.A. 2002. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev Cancer

2. Heneen, W. K. 1975. Kinetochores and microtubules in multipolar mitosis

B. Vogelstein. 1998. Genetic instabil-

and chromosome orientation. Exp Cell ities in human cancers. Nature 396:643-649. 8.D'Assoro, A.B., W. L. Lingle, and J. L. Salisbury. 2002. Centrosome

3. Sluder, G., E. A. Thompson, F. J. Miller, J. Hayes, and C. L. Rieder. 1997. The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci 110:421-429.

4. Orr-Weaver, T. L. and R. A. Weinberg. 1998. A checkpoint on the road to cancer. Nature 392:223-224.

5. Brinkley, B. R. 2001. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11:18-21.

carcinogenesis. Cancer Res 62:41154122.

10. Pihan, G.A., J. Wallace, Y. Zhou, and amplification and the development of cancer. Oncogene 21:6146-6153. 9. Goepfert, T. M., Y. E. Adigun, L. Zhong, J. Gay, D. Medina, and W. R. Brinkley.

2002. Centrosome amplification and overexpression of aurora A are early events in rat mammary

S. J. Doxsey. 2003. Centrosome ab-

normalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63:1398-1404.

11. Mack, G. and J. B. Rattner. 1993. Centrosome repositioning immediately following karyokinesis and prior to cytokinesis. Cell Motil Cytoskeleton 26:239-247.

12. Piel, M., P. Meyer, A. Khodjakov, C. L. Rieder, and M. Bornens. 2000. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149:317330.

13. Piel, M., J. Nordberg, U. Euteneuer, and M. Bornens. 2001. Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550-1553.

14.Kuriyama, R. and G.G. Borisy. 1981. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J Cell Biol 91:814-821.

15.Wheatley, D.N. 1982. The Centriole: A Central Enigma of Cell Biology. Elsevier Biomedical Press: Amsterdam, 232.

16. Lacey, K. R., P.K. Jackson, and T. Stearns. 1999. Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 96:2817-2822.

A. Micali. 1968. The centriole cycle in synchronized HeLa cells. J Cell Biol 36:329-339.

18. Vorobjev, I.A. and Y. S. Chentsov. 1982. Centrioles in the cell cycle I epithelial cells. J Cell Biol 93:938-949.

19. Alvey, P. L. 1985. An investigation of the centriole cycle using 3T3 and CHO cells. J Cell Sci 78:147-162.

20. Lange, B. M., A. J. Faragher, P. March, and K. Gull. 2000. Centriole duplication and maturation in animal cells. Curr Top Dev Biol 49:235-249.

21. Paintrand, M., M. Moudjou, H. Delacroix, and M. Bornens. 1992. Centro-some organization and centriole architecture: their sensitivity to divalent cations. J Struct Biol 108:107-128.

22. Marshall, W. F. 2001. Centrioles take center stage. Curr Biol 11:R487-R496.

23. Bornens, M. 2002. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25-34.

24. Aubin, J. E., M. Osborn, and K. Weber. 1980. Variations in the distribution and migration of centriole duplexes in mitotic PtK2 cells studied by immunofluorescence microscopy. J Cell Sci 43:177-194.

25. Kochanski, R. S. and G.G. Borisy. 1990. Mode of centriole duplication and distribution. J Cell Biol 110:15991605.

26. Rieder, C. L. 1990. Formation of the astral mitotic spindle: ultrastructural basis for the centrosome-kinetochore interaction. Electron Microsc Rev 3:269-300.

27. Meraldi, P. and E. A. Nigg. 2001. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 114:3749-3757.

28. Fry, A. M. 2002. The Nek2 protein kinase: a novel regulator of centro-some structure. Oncogene 21:61846194.

29. Rieder, C. L. and G.G. Borisy. 1981. The attachment of kinetichores to the pro-metaphase spindle in PtK1 cells. Chromosoma (Berl). 82:693-716.

30. Sluder, G. and D. A. Begg. 1985. Experimental analysis of the reproduction of spindle poles. J Cell Sci 76:35-51.

31. Sluder, G. and C. L. Rieder. 1985. Centriole number and the reproductive capacity of spindle poles. J Cell Biol 100:887-896.

C. L. Rieder, and G. Sluder. 1998. The coordination of centrosome reproduction with nuclear events during the cell cycle in the sea urchin zygote. J Cell Biol 140:1417-1426.

33. Gallant, P. and E. A. Nigg. 1992. Cyclin B2 undergos cell cycle-depentant nuclear translocation and, when expressed as a non-destructable mutant, causes mitotic arrest in HeLa cells.

J Cell Biol 117:213-224.

34. Faragher, A. J. and A. M. Fry. 2003. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell 14:2876-2889.

35. Mailand, N., C. Lukas, B. K. Kaiser, P. K. Jackson, J. Bartek, and J. Lukas. 2002. Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. Nature Cell Biol 4:317-322.

36. Lutz, W, WL. Lingle, D. McCormick, T. M. Greenwood, and J. L. Salisbury.

2001. Phosphorylation of centrin during the cell cycle and its role in cen-triole separation preceding centrosome duplication. J Biol Chem 276:2077420780.

37. Dippell, R. V 1968. The development of basal bodies in paramecium. Proc Natl Acad Sci USA 61:461-468 available.

38. Gould, R. R. 1975. The basal bodies of Chlamydomonas reinhardtii: formation from probasal bodies, isolation, and partial characterization. J Cell Biol 65:65-74.

39. Beisson, J. and M. Wright. 2003. Basal body/centriole assembly and continuity. Curr Opin Cell Biol 15:96-104.

40. Vidwans, S.J., M. L. Wong, and P. H. O'Farrell. 2003. Anomalous centriole configurations are detected in Droso-phila wing disc cells upon Cdk1 inac-tivation. J Cell Sci 116:137-143.

41. Von Ledebur-Villiger, M. 1972. Cytology and nucleic acid synthesis of parthenogenetically activated sea urchin eggs. Exp Cell Res 72:285308.

42.Kallenbach, R.J. and D. Mazia. 1982. Origin and maturation of centrioles in association with the nuclear envelope in hypertonic-stressed sea urchin eggs. Eur J Cell Biol 28:68-76.

43. Sorokin, S. P. 1968. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207230.

44. Dirksen, E. R. 1991. Centriole and basal body formation during ciliogen-esis revisited. Biol Cell 72:31-38.

45. Khodjakov, A., C. L. Rieder, G. Sluder, G. Cassels, O. Sibon, and C. L. Wang.

2002. De novo formation of centro-somes in vertebrate cells arrested during S phase. J Cell Biol 158:1171-1181.

46. Szollosi, D., P. Calarco, and P. Donahue. 1972. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11:521-541.

47. Fulton, C. and A. D. Dingle. 1971. Basal bodies, but not centrioles, in Naegleria. J Cell Biol 51:826-836.

48. Palazzo, R. E., E. Vaisberg, R.W Cole, and C.L. Rieder. 1992. Centriole duli-cation in lysates of Spisula solidissima oocytes. Science 256:219-221.

49. Fulton, C. 1971. Centrioles. In Origin and Continuity of Cell Organelles,

C. Beerman, et al. (eds). SpringerVerlag; New York, 170-213.

50. Marshall, W. F. and J. L. Rosenbaum. 2000. Are there nucleic acids in the centrosome? Curr Top Dev Biol 49:187-205.

51. Wiese, C. and Y. Zheng. 1999. Gamma-tubulin complexes and their interaction with microtubule-organizing centers. Curr Opin Struct Biol 9:250-259.

P. Dupuis-Williams. 1999. Basal body duplication in Paramecium requires gamma-tubulin. Curr Biol 9:43 -46.

53. Shang, Y., B. Li, and M. A. Gorovsky. 2002. Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-orga-nizing centers. J Cell Biol 158:11951206.

54. Dutcher, S.K. and E. C. Trabuco. 1998. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol Biol Cell 9:1293-1308.

55. Chang, P. and T. Stearns. 2000. Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function (comment). Nature Cell Biol 2:30-35.

A. Keller, J. Cohen, F. Koll, G. Bala-voine, and J. Beisson. 2000. The SM19 gene, required for duplication of basal bodies in Paramecium, encodes a novel tubulin, eta-tubulin. Curr Biol 10:14511454.

57. Dutcher, S. K., N. S. Morrissette, A.M. Preble, C. Rackley, and J. Stanga. 2002. Epsilon-tubulin is an essential compo nent of the centriole. Mol Biol Cell 13:3859-3869.

58. Chang, P., T. H. Giddings, Jr, M. Winey, and T. Stearns. 2003. Epsilon-tubulin is required for centriole duplication and microtubule organization. Nature Cell Biol 5:71-76.

59. Dutcher, S. K. 2001. The tubulin fraternity: alpha to eta. Curr Opin Cell Biol 13:49-54.

60. Dutcher, S. K. 2001. Motile organelles: the importance of specific tubulin isoforms. Curr Biol 11:R419-R422.

61. Paoletti, A., M. Moudjou, M. Pain-trand, J. L. Salisbury, and M. Bornens. 1996. Most of centrin in animal cells is not centrosome-associated and centro-somal centrin is confined to the distal lumen of centrioles. J Cell Sci 109:3089-3102.

62. Salisbury, J. L., K. M. Suino, R. Busby, and M. Springett. 2002. Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12:12871292.

63. Kirkham, M., T. Muller-Reichert, K. Oegema, S. Grill, and A. A. Hyman. 2003. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112:575-587.

64. Leidel, S. and P. Gonczy. 2003. SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev Cell 4:431-439.

65. Sluder, G., F. J. Miller, R. Cole, and C. L. Rieder. 1990. Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control. J Cell Biol 110:2025-2032.

66. Gard, D. L., S. Hafezi, T. Zhang, and S. J. Doxsey. 1990. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J. Cell Biol 110:2033-2042.

67. Mazia, D., P. Harris, and T. Bibring. 1960. The multiplicity of the mitotic centers and the time-course of their duplication and separation. Biophys Biochem Cytol 7:1-20.

68. Sluder, G., F. J. Miller, and C. L. Rieder. 1989. Reproductive capacity of sea urchin centrosomes without centrioles. Cell Motil Cytoskeleton. 13:264-273.

69. Sluder, G. and K. Lewis. 1987. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs. J Exp Zool 244:89100.

70. Raff,J. W. and D. M. Glover. 1988. Nuclear and cyctoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited by aphidicolin. J Cell Biol 107:2009-2019.

71.Balczon, R., L. Bao, WE. Zimmer, K. Brown, R. P. Zinkowski, and B. R. Brinkley. 1995. Dissociation of centro-some replication events from cycles of DNA Synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 130:105-115.

72. Winey, M. 1999. Cell cycle: driving the centrosome cycle. Curr Biol 9:R449-R452.

73. Borel, F., O. D. Lohez, F. B. Lacroix, and R. L. Margolis. 2002. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centro-some clusters in p53 and RB pocket protein-compromised cells. Proc Natl Acad Sci USA 99:9819-9824.

74. Wong, C. and T. Stearns. 2003. Cen-trosome number is controlled by a centrosome-intrinsic block to re-duplication. Nature Cell Biol 5:539-544.

75. Johnson, R. and P. Rao. 1971. Neuclo-cytoplasmic interactions in the achievement of nuclear synchrony in DNA synthesis and mitosis in multi-nucleate cells. Biol Rev 46:97-155.

76. Mussman, J. G., H.F. Horn, P.E. Carroll, M. Okuda, P. Tarapore, L. A. Donehower, and K. Fukasawa. 2000. Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19:1635-1646.

77. Sluder, G., F. J. Miller, and C. L. Rieder. 1986. The Reproduction of Centro-somes: Nuclear versus Cytoplasmic Controls. J Cell Biol 103:1873-1881.

78. Nguyen, V. Q., C. Co, and J. J. Li. 2001. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411:1068-1073.

79.Dulic, V., E. Lees, and S.I. Reed. 1992. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257:1958-1961.

80. Strausfeld, U.P., M. Howell, P. Descombes, S. Chevalier, R. Rempel,

J. Adamczewski, J. L. Maller, T. Hunt, and J. J. Blow. 1996. Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci 109:1555-1563.

81.Hinchcliffe, E.H., C. Li, E.A. Thompson, J. L. Maller, and G. Sluder. 1999. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851-854.

82. Su, J.-Y., R. E. Rempel, E. Erikson, and J. L. Maller. 1995. Cloning and characterization of the Xenopus cyclin-depen-dant kinase inhibitor p27XIC1. Proc Natl Acad Sci USA 92:10187-10191.

J. L. Maller. 1995. Maternal Xenopus Cdk2-Cyclin E complexs function during meiotic and early embryonic cell cycles that lack a G1 phase. J Biol Chem 270:6843-6855.

84.Elledge, S.J. and J.W. Harper. 1994. Cdk inhibitors: on the threshold of checkpoints and development. Curr Opin Cell Biol 6:847-852.

85. Jackson, P. K., S. Chevalier, M. Philippe, and M. W. Kirschner. 1995. Early events in DNA replication require cyclin E and are blocked by p21CIP1. J ell Biol 130:755-769.

O. Henegariu, L. Liu, G. Hangoc, and H. E. Broxmeyer. 1999. p21(cip-1/ waf-1) deficiency causes deformed nuclear architecture, centriole over-duplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93:1390-1398.

E. Nishida. 1999. Cyclin-dependent ki-nase 2 (Cdk2) is required for centro-some duplication in mammalian cells. Curr Biol 9:429-432.

88. Meraldi, P., J. Lukas, A. M. Fry, J. Bar-tek, and E.A. Nigg. 1999. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nature Cell Biol 1:88-93.

89. Balczon, R. C. 2001. Overexpression of cyclin A in human HeLa cells induces detachment of kinetochores and spindle pole/centrosome overproduction. Chromosoma 110:381-392.

90. Berthet, C., E. Aleem, V Coppola, L. Tessarollo, and P. Kaldis. 2003. Cdk2 knockout mice are viable. Curr Biol 13:1775-1785.

91. Ortega, S., I. Prieto, J. Odajima, A. Martin, P. Dubus, R. Sotillo,

J. L. Barbero, M. Malumbres, and M. Barbacid. 2003. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet 35:25-31.

92. Geng, Y., Q. Yu, E. Sicinska, M. Das, J. E. Schneider, S. Bhattacharya, W. M. Rideout, R. T. Bronson, H. Gardner, and P. Sicinski. 2003. Cyclin E ablation in the mouse (comment). Cell 114:431443.

93. Okuda, M., H. F. Horn, P. Tarapore, Y. Tokuyama, A. G. Smulian, P. K. Chan, E. S. Knudsen, I.A. Hofmann, J. D. Snyder, K. E. Bove, and K. Fuka-sawa. 2000. Nucleophosmin/B23

is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127140.

94.Schmidt-Zachmann, M.S., B. Hugle-Dorr, and W. W Franke. 1987. A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBOJ 6:1881-1890.

95. Tokuyama, Y., H. F. Horn, K. Kawa-mura, P. Tarapore, and K. Fukasawa. 2001. Specific phosphorylation of nu-cleophosmin on Thr(199) by cyclin-de-pendent kinase 2 -cyclin E and its role in centrosome duplication. J Biol Chem 276:21529-21537.

96. Chen, Z., V. B. Indjeian, M. McManus, L. Wang, and B. D. Dynlacht. 2002. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 3:339350.

97.Fisk, H.A. and M. Winey. 2001. The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106:95104.

98. Winey, M., L. Goetsch, P. Baum, and B. Byers. 1991. MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114:745-754.

99.Stucke, V.M., H.H. Sillje, L. Arnaud, and E.A. Nigg. 2002. Human Mpsl kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J 21:1723-1732.

100. Fisk, H., C. Mattison, and M. Winey. 2003. The human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci USA (in press).

G. Fujii, E. Lees, and T. J. Yen. 2003. Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. Mol Biol Cell 14:1638-1651.

102. Matsumoto, Y. and J.L. Maller. 2002. Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts (comment). Science 295:499-502.

103. Means, A. R. 1994. Calcium, calmodu-lin and cell cycle regulation. FEBS Lett 347:1-4.

J. Ross. 1997. An endogenous calcium oscillator may control early embryonic division. Proc Natl Acad Sci USA 94:1194-1199.

105. Ohta, Y., T. Ohba, and E. Miyamoto. 1990. Ca2+/calmodulin-dependent protein kinase II: localization in the interphase nucleus and the mitotic apparatus of mammalian cells. Proc Natl Acad Sci USA 87:5341-5345.

106. Pietromonaco, S.F., G.A. Seluja, and L. Elias. 1995. Identification of enzy-matically active Ca2+/calmodulin-de-pendent protein kinase in centrosomes of hemopoietic cells. Blood Cells, Mol Dis 21:34-41.

107.Tokmakov, A.A., K.I. Sato, and Y. Fu-kami. 2001. Calcium oscillations in Xenopus egg cycling extracts. J Cell Biochem 82:89-97.

108.Wood, WB., R. Hecht, S. Carr, R. Vanderslice, N. Wolf, and D. Hirsh. 1980. Parental effects and phenotypic characterization of mutations that affect early development in Caenor-habditis elegans. Dev Biol 74:446-469.

109. O'Connell, K. F., C.M. Leys, and J. G. White. 1998. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 149:1303-1321.

110. O'Connell, K. F., C. Caron, K.R. Kop-ish, D. D. Hurd, K. J. Kemphues, Y. Li, and J. G. White. 2001. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105:547-558.

111. O'Connell, K. F. 2002. The ZYG-1 kinase, a mitotic and meiotic regulator of centriole replication. Oncogene 21:6201-6208.

112. Edgar, L. G. and J. D. McGhee. 1988. DNA synthesis and the control of embryonic gene expression in C. elegans. Cell 53:589-599.

113. King, R. W., R. J. Deshaies, J.-M. Peters, and M. W. Kirschner. 1996. How pro-teolysis drives the cell cycle. Science 274:1652-1659.

114.Tugendreich, S., J. Tomkiel, W. Earn-shaw, and P. Hieter. 1995. CDC27Hs colocalizes with CDC16Hs to the cen-trosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81:261-268.

115.Freed, E., K.R. Lacey, P. Huie, S.A. Lyapina, R. J. Deshaies, T. Stearns, and P. K. Jackson. 1999. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centro-some duplication cycle. Genes Dev 13:2242-2257.

116. Gstaiger, M., A. Marti, and W. Krek. 1999. Association of human SCFSKP2 subunit p19 (SKP1) with interphase centrosomes and mitotic spindle poles. Exp Cell Res 247:554-562.

117. Wigley, W. C., R. P. Fabunmi, M. G. Lee, C. R. Marino, S. Muallem, G. N. DeMartino, and P. J. Thomas. 1999. Dynamic association of proteasomal machinery with the centrosome.

J Cell Biol 145:481-490.

118. Hansen, D.V, J.Y. Hsu, B. K. Kaiser, P. K. Jackson, and A. G. Eldridge. 2002. Control of the centriole and centro-

some cycles by ubiquitination enzymes. Oncogene 21:6209-6221.

119.Hinchcliffe, E.H. and G. Sluder. 2002. Two for two: Cdk2 and its role in centrosome doubling. Oncogene 21:61546160.

120. Jackson, P. K., A. G. Eldridge, E. Freed, L. Furstenthal, J. Y. Hsu, B. K. Kaiser, and J. D. Reimann. 2000. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10:429-439.

Y. A. Minamishima, M. Matsumoto, I. Nakamichi, K. Kitagawa, M. Shirane, R. Tsunematsu, T. Tsukiyama, N. Ishida, M. Kitagawa, and S. Hata-keyama. 2000. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 19:2069-2081.

122. Carrano, A. C., E. Eytan, A. Hershko, and M. Pagano. 1999. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol 1:193-199.

123. Meraldi, P., R. Honda, and E.A. Nigg. 2002. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53—/— cells. EMBO J 21:483-492.

124. Wojcik, E. J., D. M. Glover, and T. S. Hays. 2000. The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr Biol 10:1131-1134.

125. Jiang, J. and G. Struhl. 1998. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/ WD40-repeat protein Slimb. Nature 391:493-496.

126. Murphy, T. 2003. Drosophila skpA, a component of SCF ubiquitin ligases, regulates centrosome duplication independently of cyclin E accumulation. J Cell Sci 116:2321-2332.

127.Hinchcliffe, E.H. and G. Sluder. 2001. "It takes two to tango": understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15:1167-1181.

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment