References

1. Boveri T. 1901. Zellen-Studien IV Uber die Nature der Centrosomen. Jena Z Med Naturw 28:1-220.

2. Fawcett DW, Porter KR. 1954, A study on the fine structure of ciliated epithelia. J. Morphol. 94:221-282.

3. Ringo DL. 1967. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33:543-571.

4. Johnson UG, Porter KR. 1968. Fine structure of cell division in Chlamydo-monas reinhardi. Basal bodies and microtubules. J Cell Biol 38:403-425.

5.0'Toole ET, Giddings TH, Mcintosh JR, Dutcher SK. 2003. Three-dimen sional organization of basal bodies from wild-type and delta-tubulin deletion strains of Chlamydomonas rein-hardtii. Mol Biol Cell 14:2999-3012.

6. Rosenbaum JL, Witman GB. 2002. Intraflagellar transport. Nature Rev Mol Cell Biol 3:813-825.

7. Lechtreck KF, Teltenkotter A, Grunow A. 1999. A 210-kDa protein is located in a membrane-microtubule linker at the distal end of mature and nascent basal bodies. J Cell Sci 112 (Pt 11): 1633-1644.

8. Norrander JM, deCathelineau AM, Brown JA, Porter ME, Linck RW. 2000. The Rib43a protein is associated with forming the specialized protofilament ribbons of flagellar microtubules in Chlamydomonas. Mol Biol Cell 11:201-215.

9. Salisbury JL, Baron AT, Sanders MA. 1988. The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells. J Cell Biol 107:635-641.

10. Silflow CD, LaVoie M, Tam LW, Tousey S, Sanders M, Wu W, Borodovsky M, Lefebvre PA. 2001. The Vfll Protein in Chlamydomonas localizes in a rotation-ally asymmetric pattern at the distal ends of the basal bodies. J Cell Biol 153:63-74.

11. Harper JD, Rao PN, John PC. 1990. The mitosis-specific monoclonal antibody MPM-2 recognizes phosphopro-teins associated with the nuclear envelope in Chlamydomonas reinhardtii cells. Eur J Cell Biol 51:272-278.

12. Baron AT, Greenwood TM, Bazinet CW, Salisbury JL. 1992. Centrin is a component of the pericentriolar lattice. Biol Cell 76:383-388.

13. Goodenough UW, Shames B, Small L, Saito T, Crain RC, Sanders MA, Salisbury JL. 1993. The role of calcium in the Chlamydomonas reinhardtii mating reaction. J Cell Biol 121:365-374.

14. Wright RL, Adler SA, Spanier JG, Jar-vik JW 1989. Nucleus-basal body connector in Chlamydomonas: evidence for a role in basal body segregation and against essential roles in mitosis or in determining cell polarity. Cell Motil Cytoskeleton 14:516-526.

15. Wright RL, Salisbury J, Jarvik JW. 1985. A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol 101:1903-1912.

16. Biggins S, Rose MD. 1994. Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body. J Cell Biol 125:843-852.

17. Spang A, Courtney I, Grein K, Matzner M, Schiebel E. 1995. The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body. J Cell Biol 128:863-877.

18. Holmes JA, Dutcher SK. 1989. Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94 (Pt 2):273-285.

19. Gaffal KP, el-Gammel S. 1990. Elucidation of the enigma of the metaphase band of Chlamydomonas reinhardtii. Protoplasma 156:139-148.

20. Ehler LL, Holmes JA, Dutcher SK. 1995. Loss of spatial control of the mitotic spindle apparatus in a Chla-mydomonas reinhardtii mutant strain lacking basal bodies. Genetics 141:945-960.

21. Fromherz S, Giddings TH, Ospina-Gomez N, Dutcher SK 2004. Mutations in a-tubulin promote basal body maturation and flagellar assembly in the absence of l-tubulin. J Cell Sci 117:303-314.

22. Lechtreck KF, Melkonian M. 1991. Striated microtubule-associated fibers: identification of assemblin, a novel 34-kD protein that forms paracrystals of 2-nm filaments in vitro. J Cell Biol 115:705-716.

23. Lechtreck KF, Rostmann J, Grunow A. 2002. Analysis of Chlamydomonas SF-assemblin by GFP tagging and expression of antisense constructs.

J Cell Sci 115:1511-1522.

24. Silflow CD, Iyadurai KB. 2002. The Chlamydomonas VFL3 gene product is required for correct positioning of the basal bodies. Mol Biol Cell 13:326a.

25. Kater JM. 1929. Morphology and division of Chlamydomonas with reference to the phylogeny of the flagellate neu-romotor system. University of California Publication in Zoology 33:125-168.

26. Kuriyama R, Dasgupta S, Borisy GG. 1986. Independence of centriole formation and initiation of DNA synthesis in Chinese hamster ovary cells. Cell Motil Cytoskeleton 6:355-362.

27. Gould RR. 1975. The basal bodies of Chlamydomonas reinhardtii. Formation from probasal bodies, isolation, and partial characterization. J Cell Biol 65:65-74.

28. Coss RA. 1974. Mitosis in Chlamydo-monas reinhardtii basal bodies and the mitotic apparatus. J Cell Biol 63:325-329.

29. Dippell RV 1968. The development of basal bodies in paramecium. Proc Natl Acad Sci USA 61:461-468.

30. Biggins S, Walczak CE. 2003. Captivating capture: how microtubules attach to kinetochores. Curr Biol 13:R449-R460.

31. Preble AM, Giddings TH, Jr., Dutcher SK. 2001. Extragenic bypass suppressors of mutations in the essential gene BLD2 promote assembly of basal bodies with abnormal microtubules in Chlamydomonas reinhardtii. Genetics 157:163-181.

32. Oakley BR. 2000. An abundance of tubulins. Trends Cell Biol 10:537-542.

33. McKean PG, Baines A, Vaughan S, Gull K. 2003. Gamma-tubulin functions in the nucleation of a discrete subset of microtubules in the eukaryotic flagellum. Curr Biol 13:598-602.

34. Ruiz F, Beisson J, Rossier J, Dupuis-Williams P. 1999. Basal body duplication in Paramecium requires gamma-tubulin. Curr Biol 9:43-46.

35. Silflow CD, Liu B, LaVoie M, Richardson EA, Palevitz BA. 1999. Gamma-tubulin in Chlamydomonas : characterization of the gene and localization of the gene product in cells. Cell Motil Cytoskeleton 42:285-297.

36. Moritz M, Braunfeld MB, Guenebaut Y Heuser J, Agard DA. 2000. Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Nature Cell Biol 2:365-370.

37. Dutcher SK, Trabuco EC. 1998. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol Biol Cell 9:1293-1308.

38. Dupuis-Williams P, Fleury-Aubusson A, de Loubresse NG, Geoffroy H, Vayssie L, Galvani A, Espigat A, Ros-sier J. 2002. Functional role of epsilon-tubulin in the assembly of the cen-triolar microtubule scaffold. J Cell Biol 158:1183-1193.

39. Dutcher SK, Morrissette NS, Preble AM, Rackley C, Stanga J. 2002. Epsi-lon-tubulin is an essential component of the centriole. Mol Biol Cell 13:3859-3869.

40. Goodenough UW, StClair HS. 1975. BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii. J Cell Biol 66:480-491.

41. Chang P, Giddings TH, Jr., Winey M, Stearns T. 2003. Epsilon-tubulin is required for centriole duplication and microtubule organization. Nature Cell Biol 5:71-76.

42. Ruiz F, Krzywicka A, Klotz C, Keller A, Cohen J, Koll F, Balavoine G, Beisson J. 2000. The SM19 gene, required for duplication of basal bodies in Para-mecium, encodes a novel tubulin, eta-tubulin. Curr Biol 10:1451-1454.

43. de Saint Phalle B, Sullivan W 1998. Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J Cell Biol 141:1383-1391.

44. Klotz C, Dabauvalle MC, Paintrand M, Weber T, Bornens M, Karsenti E. 1990. Parthenogenesis in Xenopus eggs requires centrosomal integrity. J Cell Biol 110:405-415.

45. Mizukami I, Gall J. 1966. Centriole replication. II. Sperm formation in the fern, Marsilea, and the cycad, Zamia. J Cell Biol 29:97-111.

46. Marshall WF, Vucica Y, Rosenbaum JL. 2001. Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr Biol 11:308-317.

47. Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL. 2001. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 11:1586-1590.

48. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. 1998. Chlamydomonas kinesin-II-de-pendent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993-1008.

49. LeDizet M, Piperno G. 1986. Cytoplas-mic microtubules containing acety-lated alpha-tubulin in Chlamydomonas reinhardtii: spatial arrangement and properties. J Cell Biol 103:13-22.

50. Masuda M, Sato H. 1984. Reversible resorption of cilia and the centriole cycle in dividing cells of sea urchin blastulae. Zoolog Sci 1:445-462.

51. Walther Z, Vashishtha M, Hall JL. 1994, The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J Cell Biol 126:175-188.

52. Piperno G, Mead K. 1997, Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA 94:4457-4462.

53. Cole DG. 2003. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 4:435-442.

54. Brazelton WJ, Amundsen CD, Silflow CD, Lefebvre PA. 2001. The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly. Curr Biol 11:1591-1594.

55. Lewin RA, Lee TH, Fang LS. 1982. Effects of various agents on flagellar activity, flagellar autotomy and cell viability in four species of Chlamydo-monas (chlorophyta: volvocales). Symp Soc Exp Biol 35:421-437.

56. Sanders MA, Salisbury JL. 1989. Centrin-mediated microtubule severing during flagellar excision in Chla-mydomonas reinhardtii. J Cell Biol 108:1751-1760.

57. Quarmby L. 2000. Cellular Samurai: katanin and the severing of microtu-bules. J Cell Sci 113 (Pt 16):2821-2827.

58. Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, Thomas S, Cheesman S, Heuser J, Vale RD, McNally FJ. 1998. Katanin, a microtu-bule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93:277-287.

59. Smith EF, Lefebvre PA. 1998. PF15 is required for central microtubules and is homologous to p80 katanin. Mol Biol Cell 9:278a.

60. Adams GM, Huang B, Piperno G, Luck DJ. 1981. Central-pair microtubular complex of Chlamydomonas flagella: polypeptide composition as revealed by analysis of mutants. J Cell Biol 91: 69-76.

61. Lohret TA, McNally FJ, Quarmby LM.

1998. A role for katanin-mediated axonemal severing during Chlamydomonas deflagellation. Mol Biol Cell 9:1195-1207.

62. Lohret TA, Zhao L, Quarmby LM.

1999. Cloning of Chlamydomonas p60 katanin and localization to the site of outer doublet severing during deflagellation. Cell Motil Cytoskeleton 43:221-231.

63. Finst RJ, Kim PJ, Quarmby LM. 1998. Genetics of the deflagellation pathway in Chlamydomonas. Genetics 149:927936.

64. Finst RJ, Kim PJ, Griffis ER, Quarmby LM. 2000. Fa1p is a 171 kDa protein essential for axonemal microtubule severing in Chlamydomonas. J Cell Sci 113 (Pt 11):1963-1971.

65. Mahjoub MR, Montpetit B, Zhao L, Finst RJ, Goh B, Kim AC, Quarmby LM. 2002. The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during deflagellation. J Cell Sci 115:17591768.

66. Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M.

2000. Microtubule minus-end anchorage at centrosomal and non-centroso-mal sites: the role of ninein. J Cell Sci 113 (Pt 17):3013-3023.

67. Ou YY, Mack GJ, Zhang M, Rattner JB. 2002. CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J Cell Sci 115:1825-1835.

68. Quintyne NJ, Schroer TA. 2002. Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J Cell Biol 159:245-254.

69. Gromley A, Jurczyk A, Sillibourne J, Halilovic E, Mogensen M, Groisman I, Blomberg M, Doxsey S. 2003. A novel human protein of the maternal cen-triole is required for the final stages of cytokinesis and entry into S phase.

J Cell Biol 161:535-545.

70. Chang P, Stearns T. 2000. Delta-tubu-lin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nature Cell Biol 2:30-35.

71. Paintrand M, Moudjou M, Delacroix H, Bornens M. 1992. Centrosome organization and centriole architecture:

their sensitivity to divalent cations. J Struct Biol 108:107-128.

72. Huang B, Ramanis Z, Dutcher SK, Luck DJ. 1982. Uniflagellar mutants of Chlamydomonas: evidence for the role of basal bodies in transmission of positional information. Cell 29:745-753.

Was this article helpful?

0 0

Post a comment