1. Robillard N, et al.: CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma. Blood 102(3):1070-1071, 2003.

2. International Myeloma Working Group: Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121(5):749-757, 2003.

3. Greipp PR, et al.: Plasmablastic morphology—an independent prognostic factor with clinical and laboratory correlates: Eastern Cooperative Oncology Group (ECOG) myeloma trial E9486 report by the ECOG Myeloma Laboratory Group. Blood 91(7):2501-2507, 1998.

4. Bartl R, et al.: Bone marrow histology and serum beta 2 microglobulin in multiple myeloma—a new prognostic strategy. Eur J Haematol Suppl 51:88-98, 1989.

5. Schambeck CM, et al.: Characterization of myeloma cells by means of labeling index, bone marrow histology, and serum beta 2-microglobulin. Am J Clin Pathol 106(1):64-68, 1996.

6. Peest D, et al.: Prognostic value of clinical, laboratory, and histological characteristics in multiple myeloma: improved definition of risk groups. Eur J Cancer 29A(7):978-983, 1993.

7. Bartl R, Frisch B: Bone marrow histology in multiple myeloma: prognostic relevance of histologic characteristics. Hematol Rev 3:87-108, 1989.

8. San Miguel JF, et al.: Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 99(5): 1853-1856, 2002.

9. Ocqueteau M, et al.: Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol 152(6):1655-1665, 1998.

10. Ocqueteau M, et al.: Expression of the CD117 antigen (c-Kit) on normal and myelomatous plasma cells. Br J Haematol 95(3):489-493, 1996.

11. Rawstron AC, et al.: Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage [see comment]. Br J Haematol 97(1):46-55, 1997.

12. Joshua D, et al.: The labelling index of primitive plasma cells determines the clinical behaviour of patients with myelomatosis [see comment]. Br J Haematol 94(1):76-81, 1996.

13. Pope B, et al.: The functional phenotype of the primitive plasma cell in patients with multiple myeloma correlates with the clinical state. Leuk Lymphoma 27(1-2): 83-91, 1997.

14. Bakkus MH, et al.: The clonogenic precursor cell in multiple myeloma. Leuk Lymphoma 18(3-4):221-229, 1995.

15. Bakkus MH, et al.: Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326-2335, 1992.

16. Ralph QM, et al.: Advancement of multiple myeloma from diagnosis through plateau phase to progression does not involve a new B-cell clone: evidence from the Ig heavy chain gene. Blood 82(1):202-206, 1993.

17. Bakkus MH, et al.: Evidence that the clonogenic cell in multiple myeloma originates from a pre-switched but somatically mutated B cell. Br J Haematol 87(1):68-74, 1994.

18. Vescio RA, et al.: Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J Immunol 155(5):2487-2497, 1995.

19. Taylor BJ, et al.: Intraclonal homogeneity of clonotypic immunoglobulin M and diversity of nonclinical postswitch isotypes in multiple myeloma: insights into the evolution of the myeloma clone. Clin Cancer Res 8(2):502-513, 2002.

20. Matsui W, et al.: Characterization of clonogenic multiple myeloma cells. Blood 103(6):2332-2336, 2004.

21. Lai JL, et al.: Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood 85(9):2490-2497, 1995.

22. Avet-Louseau H, et al.: Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol 111(4):1116-1117, 2000.

23. Konigsberg R, et al.: Predictive role of interphase cyto-genetics for survival of patients with multiple myeloma. J Clin Oncol 18(4):804-812, 2000.

24. Fonseca R, et al.: The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance [see comment]. Blood 98(4):1271-1272, 2001.

25. Tricot G, et al.: Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86(11):4250-4256, 1995.

26. Perez-Simon JA, et al.: Prognostic value of numerical chromosome aberrations in multiple myeloma: a FISH analysis of 15 different chromosomes. Blood 91(9):3366-3371, 1998.

27. Zojer N, et al.: Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 95(6):1925-1930, 2000.

28. Fonseca R, et al.: Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 15(6):981-986, 2001.

29. Facon T, et al.: Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood 97(6):1566-1571, 2001.

30. Fassas AB, et al.: Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br J Haematol 118(4):1041-1047, 2002.

31. Shaughnessy J Jr, et al.: Prognostic impact of cytoge-netic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II. Br J Haematol 120(1):44-52, 2003.

32. Kaufmann H, et al.: Both chromosome 13 abnormalities by metaphase cytogenetics and deletion of 13q by interphase FISH only are prognostically relevant in multiple myeloma. Eur J Haematol 71(3):179-183, 2003.

33. Fonseca R, et al.: Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101(11):4569-4575, 2003.

34. Sawyer JR, et al.: Identification of new nonrandom translocations in multiple myeloma with multicolor spectral karyotyping. Blood 92(11):4269-4278, 1998.

35. Avet-Loiseau H, et al.: 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome. Cancer Res 59(18):4546-4550, 1999.

36. Fonseca R, et al.: Genomic abnormalities in monoclonal gammopathy of undetermined significance [see comment]. Blood 100(4):1417-1424, 2002.

37. Moreau P, et al.: Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 100(5):1579-1583, 2002.

38. Avet-Loiseau H, et al.: Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood 97(3):822-825, 2001.

39. Avet-Loiseau H, et al.: Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 99(6):2185-2191, 2002.

40. Avet-Loiseau H, et al.: High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res 58(24):5640-5645,

0 0

Post a comment