References

In the interest of space not all pertinent references have been cited here; we apologise to our colleagues for glaring omissions. A more comprehensive list may be obtained on request to the authors.

1. Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ: Distinctive features of "nurselike" cells that differentiate in the context of chronic lymphocytic leukemia. Blood 99:1030, 2002.

2. Caligaris-Cappio F: Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 123:380, 2003.

3. Messmer BT, Messmer D, Allen SL, et al.: In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115(3):755, 2005.

4. Rawstron AC, Green MJ, Kuzmicki A, et al.: Monoclonal B lymphocytes with the characteristics of "indolent"

chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood 100:635, 2002.

5. Calin GA, Dumitru CD, Shimizu M, et al.: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524, 2002.

6. Shanafelt TD, Geyer SM, Kay NE: Prognosis at diagnosis: integrating molecular biologic insights into clinical practice for patients with CLL. Blood 103:1202, 2004.

7. Ries LAG, Eisner MP, Kosary, CL, et al. (eds.): SEER Cancer Statistics Review, 1975-2000. Bethesda, MD: National Cancer Institute; 2003. Available at: http://seer.cancer.gov/csr/1975_2000

8. Houlston RS, Sellick G, Yuille M, Matutes E, Catovsky D: Causation of chronic lymphocytic leukemia-insights from familial disease. Leuk Res 27:871, 2003.

9. Caporaso N, Marti GE, Goldin L: Perspectives on familial chronic lymphocytic leukemia: genes and the environment. Semin Hematol 41:201, 2004.

10. Summersgill B, Thornton P, S. Atkinson S, et al.: Chromosomal imbalances in familial chronic lympho-cytic leukaemia: a comparative genomic hybridisation analysis. Leukemia 16;1229, 2002.

11. Ishkanian AS, Malloff CA, Watson SK, et al.: A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36:299, 2004.

12. Carsetti R, Rosado MM, Wardmann H: Peripheral development of B cells in mouse and man. Immunol Rev 197:179, 2004.

13. Rawstron AC, Yuille MR, Fuller J, et al.: Inherited predisposition to CLL is detectable as subclinical monoclonal B-lymphocyte expansion. Blood 100:2289, 2002.

14. Ghia P, Prato G, Scielzo C, et al.: Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood 103:2337, 2004.

15. Li H, Ayer LM, Polyak MJ, Mutch CM, et al.: The CD20 calcium channel is localized to microvilli and constitu-tively associated with membrane rafts: antibody binding increases the affinity of the association through an epi-tope-dependent cross-linking-independent mechanism. J Biol Chem 279:19893, 2004.

16. Stevenson FK, Caligaris-Cappio F: Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 103:4389, 2004.

17. Admirand JH, Rassidakis GZ, Abruzzo LV, et al.: Immunohistochemical detection of ZAP-70 in 341 cases of non-Hodgkin and Hodgkin lymphoma. Mod Pathol 17:954, 2004.

18. Damle RN, Ghiotto F, Valetto A, et al.: B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99: 4087, 2002.

19. Albesiano E, Messmer BT, Damle RN, et al.: Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood, 102:3333, 2003.

20. Wiestner A, Rosenwald A, Barry TS, et al.: ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101:4944, 2003.

21. Orchard JA, Ibbotson RE, Davis Z, et al.: ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 363:105, 2004.

22. Schwaenen C, Nessling M, Wessendorf S, et al.: Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA 101:1039, 2004.

23. Gardiner AC, Corcoran MM, Oscier DG: Cytogenetic, fluorescence in situ hybridisation, and clinical evaluation of translocations with concomitant deletion at 13q14 in chronic lymphocytic leukaemia. Genes Chromosomes Cancer 20:73, 1997.

24. Stilgenbauer S, Bullinger L, Lichter P, Dohner H:. Genetics of chronic lymphocytic leukemia: genomic aberrations and VH gene mutation status in pathogene-sis and clinical course. Leukemia 16:993, 2002.

25. Corcoran MM, Hammarsund M, Zhu C, et al.: DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse. Genes Chromosomes Cancer 40:285, 2004.

26. Santarosa M, Ashworth A: Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim Biophys Acta 1654: 105, 2004.

27. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281, 2004.

28. Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83, 2004.

29. Liu CG, Calin GA, Meloon B, et al.: An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740, 2004.

30. Calin GA, Liu CG, Sevignani C, et al.: MicroRNA profiling reveals distinct signatures in B cell chronic lympho-cytic leukemias. Proc Natl Acad Sci USA 101(32):11755, 2004.

31. Stankovic T, Stewart GS, Fegan C, et al.: Ataxia telangiec-tasia mutated-deficient B-cell chronic lymphocytic leukemia occurs in pregerminal center cells and results in defective damage response and unrepaired chromosome damage. Blood 99:300, 2002.

32. Pettitt AR, Sherrington PD, Stewart G, et al.: p53 dysfunction in B-cell chronic lymphocytic leukemia: inacti-vation of ATM as an alternative to TP53 mutation. Blood 98:814, 2001.

33. Stankovic T, Hubank M, Cronin D, et al.: Microarray analysis reveals that TP53- and ATM-mutant B-CLLs share a defect in activating proapoptotic responses after DNA damage but are distinguished by major differences in activating prosurvival responses. Blood 103:291, 2004.

34. Dyer MJS, Oscier DG: The configuration of the immunoglobulin genes in B cell chronic lymphocytic leukemia. Leukemia 16:973, 2002.

35. Chiorazzi N, Ferrarini M: B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 21:841, 2003.

36. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K: Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117:787, 2004.

37. Isaacson PG, Du MQ: Timeline: MALT lymphoma: from morphology to molecules. Nat Rev Cancer 4:644, 2004.

38. Ghiotto F, Fais F, Valetto A, et al.: Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest 113:1008, 2004.

39. Widhopf GF, II, Rassenti LZ, Toy TL, et al.: Chronic lym-phocytic leukemia B cells of more than one percent of patients express virtually identical immunoglobulins. Blood 104(8):2499, 2004.

40. Tobin G, Thunberg U, Johnson A, et al.: Somatically mutated Ig VH3-21 genes characterize a new subset of chronic lympHhocytic leukemia. Blood 99:2262, 2002.

41. Lin K, Manocha S, Harris RJ, et al.: High frequency of p53 dysfunction and low level of VH mutation in chronic lymphocytic leukemia patients using the VH3-21 gene segment. Blood 102:1145, 2003.

42. Vallat L, Magdelenat H, Merle-Beral H, et al.: The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 101:4598, 2003.

43. Levesque MC, O'Loughlin CW, Weinberg JB: Use of serum-free media to minimize apoptosis of chronic lymphocytic leukemia cells during in vitro culture. Leukemia 20:1305, 2001.

44. Pettitt AR, Moran EC, Cawley JC: Homotypic interactions protect chronic lymphocytic leukaemia cells from spontaneous death in vitro. Leuk Res 25:1003, 2001.

45. Jones DT, Ganeshaguru K, Anderson RJ, et al.: Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic leukemia cells from chlorambucil-and radiation-induced apoptosis. Blood 101:3174, 2003.

46. Ghia P, Caligaris-Cappio F: The indispensable role of microenvironment in the natural history of low-grade B-cell neoplasms. Adv Cancer Res 79:157, 2000.

47. Cuni S, Perez-Aciego P, Perez-Chacon G, et al.: A sustained activation of PI3K/NF-kB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 18:1391, 2004.

48. Opferman JT, Letai A, Beard C, et al.: Development and maintenance of B and T lymphocytes requires antiapop-totic MCL-1. Nature 426:671, 2003.

49. Bogner C, Schneller F, Hipp S, et al.: Cycling B-CLL cells are highly susceptible to inhibition of the proteasome: involvement of p27, early D-type cyclins, Bax, and cas-pase-dependent and -independent pathways. Exp Hematol 31:218, 2003.

50. Hultdin M, Rosenquist R, Thunberg U, et al.: Association between telomere length and VH gene mutation status in chronic lymphocytic leukaemia: clinical and biological implications. Br J Cancer 88:593, 2003.

51. Damle RN, Batliwalla FM, Ghiotto F, et al.: Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Blood 103:375, 2004.

52. Scadden DT: Cancer stem cells refined. Nat Immunol 5:701, 2004.

This page intentionally left blank

Chapter

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment