1. Bennett JM, Catovsky D, Daniel MT, et al.: The morphological classification of acute lymphoblastic leukaemia: concordance among observers and clinical correlations. Br J Haematol 47:553, 1981.

2. Harris NL, Jaffe ES, Diebold J, et al.: World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the

Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 17:3835, 1999.

3. Bloomfield CD, Secker-Walker LM, Goldman AI, et al.: Six-year follow-up of the clinical significance of karyotype in acute lymphoblastic leukemia. Cancer Genet Cytogenet 40:171, 1989.

4. Fenaux P, Lai JL, Morel P, et al.: Cytogenetics and their prognostic value in childhood and adult acute lym-phoblastic leukemia (ALL) excluding L3. Hematol Oncol 7:307, 1989.

5. Walters R, Kantarjian HM, Keating MJ, et al.: The importance of cytogenetic studies in adult acute lym-phocytic leukemia. Am J Med 89:579, 1990.

6. Groupe Français de Cytogénétique Hématologique: Cytogenetic abnormalities in adult acute lymphoblas-tic leukemia: correlations with hematologic findings outcome. A Collaborative Study of the Groupe Français de Cytogénétique Hématologique. Blood 88:3135, 1996.

7. Secker-Walker LM, Prentice HG, Durrant J, et al.: Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. Br J Haematol 96:601, 1997.

8. Faderl S, Kantarjian HM, Talpaz M, et al.: Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 91:3995, 1998.

9. Chessells JM, Hall E, Prentice HG, et al.: The impact of age on outcome in lymphoblastic leukaemia; MRC UKALL X and XA compared: a report from the MRC Paediatric and Adult Working Parties. Leukemia 12:463, 1998.

10. Wetzler M, Dodge RK, Mrôzek K, et al.: Prospective karyotype analysis in adult acute lymphoblastic leukemia: the Cancer and Leukemia Group B experience. Blood 93:3983, 1999.

11. Gleissner B, Rieder H, Thiel E, et al.: Prospective BCR-ABL analysis by polymerase chain reaction (RT-PCR) in adult acute B-lineage lymphoblastic leukemia: reliability of RT-nested-PCR and comparison to cytogenetic data. Leukemia 15:1834, 2001.

12. Block AW, Carroll AJ, Hagemeijer A, et al.: Rare recurring balanced chromosome abnormalities in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 33:401, 2002.

13. Faderl S, Talpaz M, Estrov Z, et al.: The biology of chronic myeloid leukemia. N Engl J Med 341:164, 1999.

14. Kantarjian HM, Talpaz M, Dhingra K, et al.: Significance of the P210 versus P190 molecular abnormalities in adults with Philadelphia chromosome-positive acute leukemia. Blood 78:2411, 1991.

15. Westbrook CA, Hooberman AL, Spino C, et al.: Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: a Cancer and Leukemia Group B study (8762). Blood 80:2983, 1992.

16. Melo JV, Gordon DE, Tuszynski A, et al.: Expression of the ABL-BCR fusion gene in Philadelphia-positive acute lymphoblastic leukemia. Blood 81:2488, 1993.

17. Lim LC, Heng KK, Vellupillai M, et al.: Molecular and phenotypic spectrum of de novo Philadelphia positive acute leukemia. Int J Mol Med 4:665, 1999.

18. van Rhee F, Hochhaus A, Lin F, et al.: P190 BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias. Blood 87:5213, 1996.

19. Secker-Walker LM, Craig JM, Hawkins JM, et al.: Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia 5:196, 1991.

20. Rieder H, Ludwig WD, Gassmann W, et al.: Prognostic significance of additional chromosome abnormalities in adult patients with Philadelphia chromosome positive acute lymphoblastic leukaemia. Br J Haematol 95:678, 1996.

21. Ko BS, Tang JL, Lee FY, et al.: Additional chromosomal abnormalities and variability of BCR breakpoints in Philadelphia chromosome/BCR-ABL-positive acute lymphoblastic leukemia in Taiwan. Am J Hematol 71:291, 2002.

22. Gleißner B, Gökbuget N, Bartram CR, et al.: Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood 99:1536, 2002.

23. Radich J, Gehly G, Lee A, et al.: Detection of BCR-ABL transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 89:2602, 1997.

24. Preti HA, O'Brien S, Giralt S, et al.: Philadelphia-chromosome-positive adult acute lymphocytic leukemia: characteristics, treatment results, and prognosis in 41 patients. Am J Med 97:60-65, 1994.

25. Thomas X, Thiebaut A, Olteanu N, et al.: Philadelphia chromosome positive adult acute lymphoblastic leukemia: characteristics, prognostic factors and treatment outcome. Hematol Cell Ther 40:119, 1998.

26. Faderl S, Kantarjian HM, Thomas DA, et al.: Outcome of Philadelphia chromosome-positive adult acute lym-phoblastic leukemia. Leuk Lymphoma 36:263, 2000.

27. Wetzler M, Dodge RK, Mrôzek K, et al.: Additional cytogenetic abnormalities in adults with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a study of the Cancer and Leukaemia Group B. Br J Haematol 124:275, 2004.

28. Hu Y, Liu Y, Pelletier S, et al.: Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lym-phoblastic leukemia but not chronic myeloid leukemia. Nat Genet 36:453, 2004.

29. Hofmann WK, Komor M, Hoelzer D, Ottmann OG: Mechanisms of resistance to STI571 (Imatinib) in Philadelphia-chromosome positive acute lymphoblas-tic leukemia. Leuk Lymphoma 45:655, 2004.

30. Specchia G, Mininni D, Guerrasio A, et al.: Ph positive acute lymphoblastic leukemia in adults: molecular and clinical studies. Leuk Lymphoma 18(suppl 1):37, 1995.

31. Tkachuk DC, Kohler S, Cleary ML: Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71:691, 1992.

32. Harrison CJ, Cuneo A, Clark R, et al.: Ten novel 11q23 chromosomal partner sites. Leukemia 12:811, 1998.

33. Cuthbert G, Thompson K, McCullough S, et al.: MLL amplification in acute leukaemia: a United Kingdom Cancer Cytogenetics Group (UKCCG) study. Leukemia 14:1885, 2000.

34. Strout MP, Marcucci G, Caligiuri MA, et al.: Core-binding factor (CBF) and MLL-associated primary acute myeloid leukemia: biology and clinical implications. Ann Hematol 78:251, 1999.

35. Bloomfield CD, Archer KJ, Mrozek K, et al.: 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 33:362, 2002.

36. Rozovskaia T, Ravid-Amir O, Tillib S, et al.: Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements. Proc Natl Acad Sci USA 100:7853, 2003.

37. Armstrong SA, Staunton JE, Silverman LB, et al.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30:41, 2002.

38. Tsutsumi S, Taketani T, Nishimura K, et al.: Two distinct gene expression signatures in pediatric acute lym-phoblastic leukemia with MLL rearrangements. Cancer Res 63:4882, 2003.

39. Gu Y, Nakamura T, Alder H, et al.: The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71:701, 1992.

40. Pui CH: Acute leukemias with the t(4;11)(q21;q23). Leuk Lymphoma 7:173, 1992.

41. Schoch C, Rieder H, Freund M, et al.: Twenty-three cases of acute lymphoblastic leukemia with translocation t(4;11)(q21;q23): the implication of additional chromosomal aberrations. Ann Hematol 70:195, 1995.

42. Secker-Walker LM: General report on the European Union Concerted Action Workshop on 11q23, London, UK, May 1997. Leukemia 12:776, 1998.

43. Mitelman F, Johansson B, Mertens F (eds.): Mitelman database of chromosome aberrations in cancer. Available at: Mitelman, 2005.

44. First MIC Cooperative Study Group: Morphologic, immunologic, and cytogenetic (MIC) working classification of acute lymphoblastic leukemias. Cancer Genet Cytogenet 23:189, 1986.

45. Aissani B, Bonan C, Baccichet A, et al.: Childhood acute lymphoblastic leukemia: is there a tumor suppressor gene in chromosome 12p12.3? Leuk Lymphoma 34:231, 1999.

46. Montpetit A, Larose J, Boily G, et al.: Mutational and expression analysis of the chromosome 12p candidate tumor suppressor genes in pre-B acute lymphoblastic leukemia. Leukemia 18:1499, 2004.

47. Aguiar RC, Sohal J, van Rhee F, et al.: TEL-AML1 fusion in acute lymphoblastic leukaemia of adults. Br J Haematol 95:673, 1996.

48. Raynaud S, Mauvieux L, Cayuela JM, et al.: TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia 10:1529, 1996.

49. Kwong YL, Wong KF: Low frequency of TEL/AML1 in adult acute lymphoblastic leukemia. Cancer Genet Cytogenet 98:137, 1997.

50. Golub TR, Barker GF, Lovett M, et al.: Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77:307, 1994.

51. Romana SP, Le Coniat M, Berger R: t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer 9:186, 1994.

52. Asakura K, Uchida H, Miyachi H, et al.: TEL/AML1 overcomes drug resistance through transcriptional repression of multidrug resistance-1 gene expression. Mol Cancer Res 2:339, 2004.

53. Zaza G, Yang W, Kager L, et al.: Acute lymphoblastic leukemia with TEL-AML1 fusion has lower expression of genes involved in purine metabolism and lower de novo purine synthesis. Blood 104:1435, 2004.

54. Willis TG, Dyer MJ: The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96:808, 2000.

55. Satterwhite E, Sonoki T, Willis TG, et al.: The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 98:3413, 2001.

56. Fu TB, Virgilio L, Narducci MG, et al.: Characterization and localization of the TCL-1 oncogene product. Cancer Res 54:6297, 1994.

57. MacLeod RAF, Nagel S, Kaufmann M, et al.: Activation of HOX11L2 by juxtaposition with 3'-BCL11B in an acute lymphoblastic leukemia cell line (HPB-ALL) with t(5;14)(q35;q32.2). Genes Chromosomes Cancer 37:84, 2003.

58. Bernard OA, Busson-LeConiat M, Ballerini P, et al.: A new recurrent and specific cryptic translocation, t(5;14) (q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15:1495, 2001.

59. Mancini M, Vegna ML, Castoldi GL, et al.: Partial deletions of long arm of chromosome 6: biologic and clinical implications in adult acute lymphoblastic leukemia. Leukemia 16:2055, 2002.

60. Mellentin JD, Murre C, Donlon TA, et al.: The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science 246:379, 1989.

61. Murre C, McCaw PS, Baltimore D: A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777, 1989.

62. Nourse J, Mellentin JD, Galili N, et al.: Chromosomal translocation t(1;19) results in synthesis of a home-obox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60:535, 1990.

63. Kamps MP, Murre C, Sun XH, et al.: A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60:547, 1990.

64. Troussard X, Rimokh R, Valensi F, et al.: Heterogeneity of t(1;19)(q23;p13) acute leukaemias. Br J Haematol 89:516, 1995.

65. Neri A, Barriga F, Knowles DM, et al.: Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct patho-genetic forms of Burkitt lymphoma. Proc Natl Acad Sci USA 85:2748, 1988.

66. Gerbitz A, Mautner J, Geltinger C, et al.: Deregulation of the proto-oncogene c-myc through t(8;22) translocation in Burkitt's lymphoma. Oncogene 18:1745, 1999.

67. Hecht JL, Aster JC: Molecular biology of Burkitt's lymphoma. J Clin Oncol 18:3707, 2000.

68. Boxer LM, Dang CV: Translocations involving c-myc and c-myc function. Oncogene 20:5595, 2001.

69. Shiramizu B, Barriga F, Neequaye J, et al.: Patterns of chromosomal breakpoint locations in Burkitt's lymphoma: relevance to geography and Epstein-Barr virus association. Blood 77:1516, 1991.

70. Gutierrez MI, Bhatia K, Barriga F, et al.: Molecular epidemiology of Burkitt's lymphoma from South America: differences in breakpoint location and Epstein-Barr virus association from tumors in other world regions. Blood 79:3261, 1992.

71. Bhatia K, Spangler G, Gaidano G, et al.: Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas. Blood 84:883, 1994.

72. Lieberson R, Ong J, Shi X, et al.: Immunoglobulin gene transcription ceases upon deletion of a distant enhancer. EMBO J 14:6229, 1995.

73. Heinonen K, Mahlamaki E, Riikonen P, et al.: Acquired X-chromosome aneuploidy in children with acute lym-phoblastic leukemia. Med Pediatr Oncol 32:360, 1999.

74. Onodera N, McCabe NR, Rubin CM: Formation of a hyperdiploid karyotype in childhood acute lymphoblas-tic leukemia. Blood 80:203, 1992.

75. Third International Workshop on Chromosomes in Leukemia: Chromosomal abnormalities and their clinical significance in acute lymphoblastic leukemia. Cancer Res 43:868, 1983.

76. Harrison CJ, Moorman AV, Broadfield ZJ, et al.: Three distinct subgroups of hypodiploidy in acute lym-phoblastic leukaemia. Br J Haematol 125:552, 2004.

77. Garipidou V, Yamada T, Prentice HG, et al.: Trisomy 8 in acute lymphoblastic leukemia (ALL): a case report and update of the literature. Leukemia 4:717, 1990.

78. Heerema NA, Nachman JB, Sather HN, et al.: Deletion of 7p or monosomy 7 in pediatric acute lymphoblastic leukemia is an adverse prognostic factor: a report from the Children's Cancer Group. Leukemia 18:939, 2004.

79. Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-ß family signalling. Nature 425:577, 2003.

80. Armstrong SA, Kung AL, Mabon ME, et al.: Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3:173, 2003.

81. Taketani T, Taki T, Sugita K, et al.: FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 103:1085, 2004.

82. Armstrong SA, Mabon ME, Silverman LB, et al.: FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 103:3544, 2004.

83. Paietta E, Ferrando AA, Neuberg D, et al.: Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood 104:558, 2004.

84. Brown P, Levis M, Shurtleff S, et al.: FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 105:812, 2005.

85. Ferrando AA, Look AT: Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 40:274, 2003.

86. Ferrando AA, Neuberg DS, Staunton J, et al.: Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1:75, 2002.

87. Cave H, Suciu S, Preudhomme C, et al.: Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 103:442, 2004.

88. Ferrando AA, Neuberg DS, Dodge RK, et al.: Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 363:535, 2004.

89. Bernard OA, Busson-LeConiat M, Ballerini P, et al.: A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15:1495, 2001.

90. Berger R, Dastugue N, Busson M, et al.: t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Français de Cytogénétique Hématologique (GFCH). Leukemia 17:1851, 2003.

91. Cave H, Suciu S, Preudhomme C, et al.: Clinical significance of HOX11L2 expression linked to t(5;14) (q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 103:442, 2004.

92. Ballerini P, Blaise A, Busson-Le Coniat M, et al.: HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood 100:991, 2002.

93. Weng AP, Ferrando AA, Lee W, et al.: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269, 2004.

94. Pear WS, Aster JC: T cell acute lymphoblastic leukemia/ lymphoma: a human cancer commonly associated with aberrant NOTCH1 signaling. Curr Opin Hematol 11:426, 2004.

95. Beverly LJ, Capobianco AJ: Targeting promiscuous signaling pathways in cancer: another Notch in the bedpost. Trends Mol Med 10:591, 2004.

96. Willenbrock H, Juncker AS, Schmiegelow K, et al.: Prediction of immunophenotype, treatment response, and relapse in childhood acute lymphoblastic leukemia using DNA microarrays. Leukemia 18:1270, 2004.

97. Tsukasaki K, Tanosaki S, DeVos S, et al.: Identifying progression-associated genes in adult T-cell leukemia/ lymphoma by using oligonucleotide microarrays. Int J Cancer 109:875, 2004.

98. Mitchell SA, Brown KM, Henry MM, et al.: Inter-platform comparability of microarrays in acute lym-phoblastic leukemia. BMC Genomics 5:71, 2004.

99. Holleman A, Cheok MH, den Boer ML, et al.: Geneexpression patterns in drug-resistant acute lymphoblas-tic leukemia cells and response to treatment. N Engl J Med 351:533, 2004.

100. Aplenc R, Lange B: Pharmacogenetic determinants of outcome in acute lymphoblastic leukaemia. Br J Haematol 125:421, 2004.

101. Weinshilboum RM, Sladek SL: Mercaptopurine phar-macogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32:651, 1980.

102. Lennard L, Lilleyman JS: Are children with lymphoblastic leukaemia given enough 6-mercaptopurine? Lancet 2:785, 1987.

103. Lennard L, Van Loon JA, Lilleyman JS, et al.: Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 41:18, 1987.

104. Koren G, Ferrazini G, Sulh H, et al.: Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med 323:17, 1990.

105. Schmiegelow K, Schr0der H, Gustafsson G, et al.: Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. J Clin Oncol 13:345, 1995.

106. Krynetski EY, Schuetz JD, Galpin AJ, et al.: A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci USA 92:949, 1995.

107. Yates CR, Krynetski EY, Loennechen T, et al.: Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 126:608, 1997.

108. McLeod HL, Krynetski EY, Relling MV, et al.: Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14:567, 2000.

109. Relling MV, Hancock ML, Boyett JM, et al.: Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 93:2817, 1999.

110. Relling MV, Rubnitz JE, Rivera GK, et al.: High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 354:34, 1999.

111. Relling MV, Yanishevski Y, Nemec J, et al.: Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 12:346, 1998.

112. Chiusolo P, Reddiconto G, Casorelli I, et al.: Preponderance of methylenetetrahydrofolate reductase

C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol 13:1915, 2002.

113. Taub JW, Matherly LH, Ravindranath Y, et al.: Polymorphisms in methylenetetrahydrofolate reductase and methotrexate sensitivity in childhood acute lymphoblastic leukemia. Leukemia 16:764, 2002.

114. Bernbeck B, Mauz-Korholz C, Zotz RB, et al.: Methylenetetrahydrofolate reductase gene polymorphism and glucocorticoid intake in children with ALL and aseptic osteonecrosis. Klin Padiatr 215:327, 2003.

115. Kishi S, Griener J, Cheng C, et al.: Homocysteine, phar-macogenetics, and neurotoxicity in children with leukemia. J Clin Oncol 21:3084, 2003.

116. Krajinovic M, Lemieux-Blanchard E, Chiasson S, et al.: Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 4:66, 2004.

117. Gorlick R, Cole P, Banerjee D, et al.: Mechanisms of methotrexate resistance in acute leukemia. Decreased transport and polyglutamylation. Adv Exp Med Biol 457:543, 1999.

118. Belkov VM, Krynetski EY, Schuetz JD, et al.: Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood 93:1643, 1999.

119. Laverdiere C, Chiasson S, Costea I, et al.: Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 100:3832, 2002.

120. Krajinovic M, Costea I, Chiasson S: Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 359:1033, 2002.

121. Lauten M, Matthias T, Stanulla M, et al.: Association of initial response to prednisone treatment in childhood acute lymphoblastic leukaemia and polymorphisms within the tumour necrosis factor and the interleukin-10 genes. Leukemia 16:1437, 2002.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment