References

1. Bennett JH: Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinb Med Surg J 64:413, 1845.

2. Virchow R: Weisses Blut. Frorieps Notizen 36:151, 1845.

3. Nowell P, Hungerford D: A minute chromosome in human chronic granulocytic leukemia. Science 132: 1497, 1960.

4. Daley GQ, Van Etten RA, Baltimore D: Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824, 1990.

5. Druker BJ, Talpaz M, Resta DJ, et al.: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031, 2001.

6. Cervantes F, Hernandez-Boluda JC, Ferrer A, et al.: The changing profile of Ph-positive chronic myeloid leukemia at presentation: possible impact of earlier diagnosis on survival. Haematologica 84:324, 1999.

7. Lichtman, MA: Chronic myelogenous leukemia and related disorders. In Williams WJ, Beutler E, Erslev A, Lichtman MA (eds.) Hematology, 4th ed. New York: McGraw-Hill; 1991:202.

8. Buesche G, Georgii A, Duensing A, et al.: Evaluating the volume ratio of bone marrow affected by fibrosis: a parameter crucial for the prognostic significance of marrow fibrosis in chronic myeloid leukemia. Hum Pathol 34:391,2003.

9. Aguayo A, Kantarjian H, Manshouri T, et al.: Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96:2240, 2000.

10. Kantarjian HM, Talpaz M: Definition of the accelerated phase of chronic myelogenous leukemia. J Clin Oncol 6:180, 1988.

11. Talpaz M, Silver RT, Druker BJ, et al.: Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99:1928, 2002.

12. Favre G, Passweg J, Hoffmann T, et al.: Immunophenotype of blast crisis in chronic myeloid leukemia. Schweiz Med Wochenschr 128:1624, 1998.

13. Cervantes F, Villamor N, Esteve J, et al.: "Lymphoid" blast crisis of chronic myeloid leukaemia is associated with distinct clinicohaematological features. Br J Haematol 100:123, 1998.

14. Rowley JD: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290, 1973.

15. Bartram CR, de Klein A, Hagemeijer A, et al.: Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306:277, 1983.

16. Groffen J, Stephenson JR, Heisterkamp N, et al.: Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93, 1984.

17. Vardiman JW, Pierre R, Thiele J, et al.: Chronic myelo-proliferative diseases. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds.) Tumors of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001:15.

18. Schoch C, Schnittger S, Bursch S, et al.: Comparison of chromosome banding analysis, interphase- and hyper-metaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 16:53, 2002.

19. Le Gouill S, Talmant P, Milpied N, et al.: Fluorescence in situ hybridization on peripheral-blood specimens is a reliable method to evaluate cytogenetic response in chronic myeloid leukemia. J Clin Oncol 18:1533, 2000.

20. Reinhold U, Hennig E, Leiblein S, et al.: FISH for BCR-ABL on interphases of peripheral blood neutrophils but not of unselected white cells correlates with bone marrow cytogenetics in CML patients treated with imatinib. Leukemia 17:1925, 2003.

21. Chase A, Grand F, Zhang JG, et al.: Factors influencing the false positive and negative rates of BCR-ABL fluorescence in situ hybridization. Genes Chromosomes Cancer 18:246, 1997.

22. Huntly BJ, Reid AG, Bench AJ, et al.: Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 98:1732, 2001.

23. Sinclair PB, Nacheva EP, Leversha M, et al.: Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 95:738, 2000.

24. Huntly BJ, Guilhot F, Reid AG, et al.: Imatinib improves but may not fully reverse the poor prognosis of patients with CML with derivative chromosome 9 deletions. Blood 102:2205, 2003.

25. Kolomietz E, Marrano P, Yee K, et al.: Quantitative PCR identifies a minimal deleted region of 120 kb extending from the Philadelphia chromosome ABL translocation breakpoint in chronic myeloid leukemia with poor outcome. Leukemia 17:1313, 2003.

26. Reid AG, Nacheva EP: A potential role for PRDM12 in the pathogenesis of chronic myeloid leukaemia with derivative chromosome 9 deletion. Leukemia 18:178, 2004.

27. Muller C, Hennig E, Franke C, et al.: The BCR/ABL-extra signal fluorescence in situ hybridization system reliably detects deletions upstream of the ABL locus: implications for reporting of results and followup of chronic myelogenous leukemia patients. Cancer Genet Cytogenet 136:149, 2002.

28. Huntly BJ, Bench AJ, Delabesse E, et al.: Derivative chromosome 9 deletions in chronic myeloid leukemia: poor prognosis is not associated with loss of ABL-BCR expression, elevated BCR-ABL levels, or karyotypic instability. Blood 99:4547, 2002.

29. Melo JV, Gordon DE, Cross NC, et al.: The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 81:158, 1993.

30. Huntly BJP, Bench A, Green AR: Double jeopardy from a single translocation: deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood 102:1160, 2003.

31. Reid AG, Huntly BJ, Grace C, et al.: Survival implications of molecular heterogeneity in variant Philadelphia-positive chronic myeloid leukaemia. Br J Haematol 121:419, 2003.

32. Mitelman F: The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma 11(suppl 1):11, 1993.

33. Johansson B, Fioretos T, Mitelman F: Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107:76, 2002.

34. Johansson B, Mertens F, Mitelman F: Geographic heterogeneity of neoplasia-associated chromosome aberrations. Genes Chromosomes Cancer 3:1, 1991.

35. Bumm T, Muller C, Al Ali HK, et al.: Emergence of clonal cytogenetic abnormalities in Ph— cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 101:1941, 2003.

36. Deininger MW, Goldman JM, Melo JV: The molecular biology of chronic myeloid leukemia. Blood 96:3343, 2000.

37. Melo JV, Myint H, Galton DA, et al.: P190 BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia 8:208, 1994.

38. Melo JV: The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88:2375, 1996.

39. Pane F, Frigeri F, Sindona M, et al.: Neutrophilic chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88:2410, 1996.

40. Hochhaus A, Reiter A, Skladny H, et al.: A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia. Blood 88:2236, 1996.

41. Al Ali HK, Leiblein S, Kovacs I, et al.: CML with an e1a3 BCR-ABL fusion: rare, benign, and a potential diagnostic pitfall. Blood 100:1092, 2002.

42. Reinhold U, Hennig E, Leiblein S, et al.: FISH for BCR-ABL on interphases of peripheral blood neutrophils but not of unselected white cells correlates with bone marrow cytogenetics in CML patients treated with imatinib. Leukemia 17:1925, 2003.

43. Garicochea B, Chase A, Lazaridou A, et al.: T lymphocytes in chronic myelogenous leukaemia (CML): no evidence of the BCR/ABL fusion gene detected by fluorescence in situ hybridization in 14 patients. Leukemia 8:1197, 1994.

44. Takahashi N, Miura I, Saitoh K, et al.: Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood 92:4758, 1998.

45. Gunsilius E, Duba HC, Petzer AL, et al.: Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355:1688, 2000.

46. Deininger M: Src kinases in Ph+ lymphoblastic leukemia. Nat Genet 36:440, 2004.

47. Talpaz M, Kantarjian H, Kurzrock R, et al.: Interferonalpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Philadelphia chromosome-positive patients. Ann Intern Med 114:532, 1991.

48. McGlave PB, De Fabritiis P, Deisseroth A, et al.: Autologous transplants for chronic myelogenous leukaemia: results from eight transplant groups. Lancet 343:1486,1994.

49. Petzer AL, Eaves CJ, Barnett MJ, et al.: Selective expansion of primitive normal hematopoietic cells in cytokine-supplemented cultures of purified cells from patients with chronic myeloid leukemia. Blood 90:64, 1997.

50. Petzer AL, Eaves CJ, Lansdorp PM, et al.: Characterization of primitive subpopulation of normal and leukemic cells present in the blood of patients with newly diagnosed as well as established chronic myeloid leukemia. Blood 88:2162, 1996.

51. Bergamaschi G, Podesta M, Frassoni F, et al.: Restoration of normal polyclonal haemopoiesis in patients with chronic myeloid leukaemia autografted with Ph-negative peripheral stem cells. Br J Haematol 87:867, 1994.

52. Carella A, Lerma E, Corsetti MT, et al.: Autografting with Philadelphia chromosome-negative mobilized hematopoietic progenitor cells in chronic myeloge-nous leukemia. Blood 93:1534, 1999.

53. Vickers M: Estimation of the number of mutations necessary to cause chronic myeloid leukaemia from epidemiological data. Br J Haematol 94:1, 1996.

54. Raskind WH, Ferraris AM, Najfeld V, et al.: Further evidence for the existence of a clonal Ph-negative stage in some cases of Ph-positive chronic myelocytic leukemia. Leukemia 7:1163, 1993.

55. Biernaux C, Loos M, Sels A, et al.: Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86:3118, 1995.

56. Bose S, Deininger M, Gora-Tybor J, et al.: The presence of BCR-ABL fusion genes in leukocytes of normal individuals: implications for the assessment of minimal residual disease. Blood 92:3362, 1998.

57. O'Dwyer ME, Gatter KM, Loriaux M, et al.: Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myeloge-nous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia 17:481, 2003.

58. Terre C, Eclache V, Rousselot P, et al.: Report of 34 patients with clonal chromosomal abnormalities in

Philadelphia-negative cells during imatinib treatment of Philadelphia-positive chronic myeloid leukemia. Leukemia 18:1340, 2004.

59. Daley GQ, Van Etten RA, Jackson PK, et al.: Nonmyristoylated Abl proteins transform a factor-dependent hematopoietic cell line. Mol Cell Biol 12:1864, 1992.

60. Hantschel O, Nagar B, Guettler S, et al.: A myristoyl/ phosphotyrosine switch regulates c-Abl. Cell 112:845, 2003.

61. Nagar B, Hantschel O, Young MA, et al.: Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859, 2003.

62. Pendergast AM: The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85:51, 2002.

63. Van Etten RA: Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol 9:179, 1999.

64. Sawyers CL, McLaughlin J, Goga A, et al.: The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell 77:121, 1994.

65. Gong JG, Costanzo A, Yang HQ, et al.: The tyrosine kinase c-Abl regulates p73 in apoptotic response to cis-platin-induced DNA damage. Nature 399:806, 1999.

66. Kharbanda S, Ren R, Pandey P, et al.: Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376:785, 1995.

67. Shafman T, Khanna KK, Kedar P, et al.: Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387:520, 1997.

68. Yuan ZM, Huang Y, Ishiko T, et al.: Regulation of Rad51 function by c-Abl in response to DNA damage. J Biol Chem 273:3799, 1998.

69. Yuan ZM, Huang Y, Whang Y, et al.: Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature 382:272, 1996.

70. Yuan ZM, Shioya H, Ishiko T, et al.: p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399:814, 1999.

71. Lewis JM, Baskaran R, Taagepera S, et al.: Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc Natl Acad Sci U S A 93:15174, 1996.

72. Lewis JM, Schwartz MA: Integrins regulate the association and phosphorylation of paxillin by c-Abl. J Biol Chem 273:14225, 1998.

73. Plattner R, Irvin BJ, Guo S, et al.: A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-gamma1. Nat Cell Biol 5:309, 2003.

74. Schwartzberg PL, Stall AM, Hardin JD, et al.: Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell 65:1165, 1991.

75. Tybulewicz VL, Crawford CE, Jackson PK, et al.: Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153, 1991.

76. Koleske AJ, Gifford AM, Scott ML, et al.: Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21:1259, 1998.

77. Wen ST, Van ER: The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl

SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev 11:2456, 1997.

78. Voncken JW, van Schaick H, Kaartinen V, et al.: Increased neutrophil respiratory burst in bcr-null mutants. Cell 80:719, 1995.

79. Lugo TG, Pendergast AM, Muller AJ, et al.: Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079, 1990.

80. Wertheim JA, Forsythe K, Druker BJ, et al.: BCR-ABL-induced adhesion defects are tyrosine kinase-indepen-dent. Blood 99:4122, 2002.

81. McWhirter JR, Galasso DL, Wang JY: A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 13:7587, 1993.

82. Papadopoulos P, Ridge SA, Boucher CA, et al.: The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res 55:34, 1995.

83. He Y, Wertheim JA, Xu L, et al.: The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 99:2957, 2002.

84. Skorski T, Nieborowska-Skorska M, Wlodarski P, et al.: The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in vivo: role in adhesion, invasion, and homing. Blood 91:406, 1998.

85. Gaston I, Johnson KJ, Oda T, et al.: Coexistence of phosphotyrosine-dependent and -independent interactions between Cbl and Bcr-Abl. Exp Hematol 32:113, 2004.

86. Salgia R, Sattler M, Pisick E, et al.: p210BCR/ABL induces formation of complexes containing focal adhesion proteins and the protooncogene product p120c-Cbl. Exp Hematol 24:310, 1996.

87. Cortez D, Reuther GW, Pendergast AM: The BCR-ABL tyrosine kinase activates mitotic signaling pathways and stimulates G1-to-S phase transition in hematopoi-etic cells. Oncogene 15:2333, 1997.

88. Skorski T, Kanakaraj P, Nieborowska Skorska M, et al.: Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86:726, 1995.

89. Sillaber C, Gesbert F, Frank DA, et al.: STAT5 activation contributes to growth and viability in Bcr/Abl-trans-formed cells. Blood 95:2118, 2000.

90. Sawyers CL, Callahan W, Witte ON: Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70:901, 1992.

91. Melo JV, Deininger MW: Biology of chronic myeloge-nous leukemia-signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 18:545-viii, 2004.

92. Pendergast AM, Quilliam LA, Cripe LD, et al.: BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75:175, 1993.

93. Goga A, McLaughlin J, Afar DE, et al.: Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 82:981, 1995.

94. Sexl V, Piekorz R, Moriggl R, et al.: Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 96:2277, 2000.

95. Li S, Gillessen S, Tomasson MH, et al.: Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 97:1442, 2001.

96. Jonuleit T, Peschel C, Schwab R, et al.: Bcr-Abl kinase promotes cell cycle entry of primary myeloid CML cells in the absence of growth factors. Br J Haematol 100:295, 1998.

97. Amos TA, Lewis JL, Grand FH, et al.: Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids. Br J Haematol 91:387, 1995.

98. Jiang X, Lopez A, Holyoake T, et al.: Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci U S A 96:12804, 1999.

99. Amarante Mendes GP, McGahon AJ, Nishioka WK

et al.: Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-xL. Oncogene 16:1383, 1998.

100. Amarante Mendes GP, Naekyung Kim C, Liu L, et al.: Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 91:1700, 1998.

101. Bedi A, Barber JP, Bedi GC, et al.: BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 86:1148, 1995.

102. Cortez D, Kadlec L, Pendergast AM: Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 15:5531, 1995.

103. Kuribara R, Honda H, Matsui H, et al.: Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors. Mol Cell Biol 24:6172, 2004.

104. Gordon MY, Dowding CR, Riley GP, et al.: Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328:342, 1987.

105. Salgia R, Quackenbush E, Lin J, et al.: The BCR/ABL oncogene alters the chemotactic response to stromal-derived factor-1alpha. Blood 94:4233, 1999.

106. Ramaraj P, Singh H, Niu N, et al.: Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res 64:5322, 2004.

107. Canitrot Y, Falinski R, Louat T, et al.: p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood 102:2632, 2003.

108. Canitrot Y, Lautier D, Laurent G, et al.: Mutator phe-notype of BCR—ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA poly-merase beta. Oncogene 18:2676, 1999.

109. Deutsch E, Dugray A, Abdul Karim B, et al.: BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood 97:2084, 2001.

110. Dierov J, Dierova R, Carroll M: BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell 5:275, 2004.

111. Takedam N, Shibuya M, Maru Y: The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci U S A 96:203, 1999.

112. Brummendorf TH, Holyoake TL, Rufer N, et al.: Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood 95:1883, 2000.

113. Hernandez-Boluda JC, Cervantes F, Colomer D, et al.: Genomic p16 abnormalities in the progression of chronic myeloid leukemia into blast crisis: a sequential study in 42 patients. Exp Hematol 31:204, 2003.

114. Sill H, Goldman JM, Cross NC: Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 85:2013, 1995.

115. Feinstein E, Cimino G, Gale RP, et al.: p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci U S A 88:6293, 1991.

116. Towatari M, Adachi K, Kato H, et al.: Absence of the human retinoblastoma gene product in the megakary-oblastic crisis of chronic myelogenous leukemia. Blood 78:2178, 1991.

117. Deguchi K, Gilliland DG: Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia 16:740, 2002.

118. Dash AB, Williams IR, Kutok JL, et al.: A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci U S A 99:7622, 2002.

119. Carapeti M, Goldman JM, Cross NC: Overexpression of EVI-1 in blast crisis of chronic myeloid leukemia. Leukemia 10:1561, 1996.

120. Cuenco GM, Ren R: Cooperation of BCR-ABL and AML1/MDS1/EVI1 in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene 20:8236, 2001.

121. Cuenco GM, Ren R: Both AML1 and EVI1 oncogenic components are required for the cooperation of AML1/MDS1/EVI1 with BCR/ABL in the induction of acute myelogenous leukemia in mice. Oncogene 23:569, 2004.

122. Helbling D, Mueller BU, Timchenko NA, et al.: The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci U S A 101:13312, 2004.

123. Perrotti D, Cesi V, Trotta R, et al.: BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 30:48, 2002.

124. Jamieson CH, Ailles LE, Dylla SJ, et al.: Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657, 2004.

125. Gaiger A, Henn T, Hoerth E, et al.: Increase of BCR-ABL chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood 86:2371, 1995.

126. Asimakopoulos FA, Shteper PJ, Krichevsky S, et al.: ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood 94:2452, 1999.

127. Elefanty AG, Cory S: Hematologic disease induced in BALB/c mice by a bcr-abl retrovirus is influenced by the infection conditions. Mol Cell Biol 12:1755, 1992.

128. Pear WS, Miller JP, Xu L, et al.: Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92:3780, 1998.

129. Heisterkamp N, Jenster G, Kioussis D, et al.: Human bcr-abl gene has a lethal effect on embryogenesis. Transgenic Res 1:45, 1991.

130. Koschmieder S, Goettgens B, Zhang P, et al.: Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105:324, 2005.

This page intentionally left blank

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment