Conclusions and Perspectives

The present article has described the method of surface reconstitution of apoenzymes on cofactor-modified electrodes, and the surface cross-linking of cofactor-enzyme affinity complexes on electrode supports as means to structurally align and electrically contact the biocatalysts with the electrodes. The method represents a new approach to nano-engineer the electrode surfaces with the enzymes for tailoring the bioelectrocatalytic functionalities of the biocatalysts. The effectiveness of the electrical communication between the redox enzymes and the electrodes was found to be far higher than the electrical contacting methods of the biocatalysts by any other chemical methodology. Besides the fundamental importance of the reconstitution process in the basic understanding of the structural factors that control electron transfer between the biocatalyst and the electrode, the method has important practical implications toward the future development of biosensor systems and biofuel cell devices. The high electron-transfer exchange rates between enzymes and electrodes yields high current outputs from the modified electrodes, and this is anticipated to enable the assembly of sensitive biosensor

Fig. 3.41 (A) SEM image of the electrogenerated Cu0-nanowires in the PAA film. (B) Reversible "ON" and "OFF" switching of the short circuit current, Isc and the open-circuit voltage, Voc, generated by the biofuel cell consisting of the anode and cathode shown in Figure 3.32A and B respectively. The cell output is switched-on at steps 1, 3 and 5 by the application of a potential of -0.5 V vs SCE on both electrodes and the generation of Cu-clusters in the respective polymer films. At points 2 and 4, the biofuel cell is switched off by the application of a potential of +0.5 V vs SCE on both electrodes, which transforms the Cu-clusters into Cu2+-ions. The biofuel cell operated in an air-saturated solution that included 80 mM glucose. (C) Open-circuit voltages (Voc) at variable concentrations of glucose consisting of the Cu-clusters activated anode and cathode shown in Figure 3.40A and B, respectively, upon the injection of different glucose concentrations: (a) 2 mM, (b) 3 mM, (c) 8 mM, (d) 40 mM. Inset: Calibration curve corresponding to the open-circuit voltage of the electrochemically activated biofuel cell at variable glucose concentrations. (The system is always saturated with air)

devices, to organize miniaturized biosensors, and to construct efficient biofuel cell elements.

Recent advances in nanotechnology provide new opportunities for the integration of redox proteins and electrode supports. Metal and semiconductor nanoparticles or metallic or other conductive or semiconductive nanowires exhibit dimensions comparable to redox enzymes. Thus, the integration of redox proteins with these nano elements may combine the unique electronic and charge transport properties of nanomaterials with the superb catalytic properties of enzymes to yield hybrid materials of new bioelectrocatalytic functions. Indeed, the recent reports on the electrical contacting of redox enzymes by means of nanoparticles [77], carbon nanotubes [72] or polymeric wires [76] spark imaginative challenging possibilities for the future development of nanostructured enzyme systems. The recent demonstration of the electrical contacting of the redox enzyme glucose oxidase by its reconstitution on polyaniline wires associated with electrodes [76], suggests that other conductive polymers such as polythiophenes may be used as electrical contacting wires. Also, the semiconductive properties of conductive polymers may be coupled with redox enzymes to yield new biomaterial-based transistor systems or photovoltaic devices. Also, the recent report [127] on the fabrication of chiral polyaniline wires suggests that the reconstitution of apo-flavoenzymes on FAD-functionalized chiral polyaniline wires may lead to chiroselective electrical contacting between redox proteins and electrode surfaces. Of particular interest would be the analysis of the electrical contacting phenomenon at the single molecule level. Extensive recent research efforts are directed to the analysis of the bioelectrocatalytic functions of single redox proteins [128] and the development of biomaterial-based transistors [71]. Although these studies are at their infancy, the use of the reconstitution process to align redox proteins on surfaces might be an important step to analyze electron transport properties through proteins at the molecular level. Similarly, the bioelectrocatalytic charging of Au-nanoparticles by surface-reconstituted redox enzymes [79] suggests that systems that "bio-pump" electrons into a single Au-nanoparticle and reveal quantized single-electron charging events and coulomb blockades will be assembled in the near future.

Another important broadening of the reconstitution process is in the area of de novo synthesized proteins. The present study has demonstrated the feasibility of organizing bioelectronic systems based on reconstituted de novo proteins (see Section 3.2.4). These examples spark the future possibilities in the field. By the reconstitution of new electroactive synthetic cofactors into predesigned de novo proteins, new man-made bioelectrocatalysts may be envisaged. In fact, the reconstitution processes might be extended to other biomimetic systems such as pretailored nucleic acids to yield biocatalytic DNAzymes systems. Indeed, the reconstitution of Fe(III)-protoporphyrin IX into a G-quadruplex nucleic acid structure has been reported to act as a biocatalytic assembly that mimics peroxidase function [129]. The reconstitution of nucleic acids (aptamers) with other molecular components such as FAD or NAD(P)+ cofactors, and the integration of these systems with electrode surfaces, are anticipated to lead to new man-made bioelectrocatalytic systems.

1 R.A. Marcus, N. Sutin, Biochim. 13 Biophys. Acta, 1985, 811, 265-322.

2 [a] I. Willner, E. Katz, Angew. Chem. 14 Int. Ed., 2000, 39, 1180-1218; [b] A.

3579-3587; [c] A. Heller, Acc. Chem. Res., 1990, 23, 128-134.

3 P.N. Bartlett, P. Tebbutt, R.G. 16 Whitaker, Prog. React. Kinetics, 1991,

5 [a] M.R. Tarasevich, Bioelectrochem. Bioenerg., 1979, 6, 587-597; [b] H.A.O. Hill, I.J. Higgins, Philos. Trans. R. Soc. London, Ser. A, 1981, 302, 267-273.

6 T. Matsue, N. Kasai, M. Narumi, M. 19 Nishizawa, H. Yamada, I. Uchida,

J. Electroanal. Chem, 1991, 300, 111-118.

407-413; [b] I. Taniguchi, K. Toyosawa, H. Yamaguchi, K. Yasukouchi, J. Chem. 21 Soc., Chem. Commun, 1982, 1032-1033.

8 [a] J. Ye, R.P. Baldwin, Anal. Chem, 22 1988, 60, 2263-2268; [b] A.-E.F. Nassar,

1995, 67, 2386-2392.

9 [a] W. Schuhmann, T.J. Ohara, H.-L. 24 Schmidt, A. Heller, J. Am. Chem. Soc.,

1991, 113, 1394-1397; [b] Y. Degani, A. Heller,J.Am. Chem. Soc., 1988, 110, 2615-2620; [c] W. Schuhmann, Biosens. Bioelectron., 1995, 10, 181-192; 25

[d] I. Willner, N. Lapidot, A. Riklin, R. Kasher, E. Zahavy, E. Katz, J. Am. Chem. Soc, 1994, 116, 1428-1441.

10 I. Willner, A. Riklin, B. Shoham, 26 D. Rivenson, E. Katz, Adv. Mater, 1993, 5,912-915.

11 [a] P.D. Hale, T. Inagaki, H.I. Karan, Y. 27 Okamoto, T.A. Skotheim, J. Am. Chem.

H.L. Karan, Y. Okamoto, Anal. Chem, 1994, 66, 1231-1235.

12 I. Willner, E. Katz, N. Lapidot, 29 Bioelectrochem. Bioenerg., 1992, 29,

1992, 64, 2889-2896.

1991, 95, 5970-5975.

I. Willner, R. Kasher, E. Zahavy, N. Lapidot, J. Am. Chem. Soc, 1992, 114, 10963-10965. A. Badia, R. Carlini, A. Fernandez,

F. Battaglini, S.R. Mikkelsen, A.M. English, J. Am. Chem. Soc., 1993, 115, 7053-7060.

H.G. Eisenwiener, G.V. Schultz, Naturwissenschaften, 1969, 56, 563-564. E. Katz, A.N. Shipway, I. Willner, in Handbook of Fuel Cell Technology (Eds.: W. Vielstich, S. Lamm, H.A. Gasteiger), Vol. 1, Part 4, John Wiley & Sons, Chichester, 2003, 355-381.

[a] J.R. Winkler, A.J. Di Bilio, N.A. Farrow, J.H. Richards, H.B. Gray, PureAppl. Chem., 1999, 71, 1753-1764;

[b] H.B. Gray, J.R. Winkler, Annu. Rev. Biochem., 1996, 65, 537-561.

L.S. Fox, M. Kozik, J.R. Winkler, H.B. Gray, Science, 1990, 247, 1069-1071. J.R.Winkler, H.B. Gray, Chem. Rev.,

I. Hamachi, S. Shinkai, Eur. J. Org. Chem, 1999, 539-549.

[a] I. Willner, E. Zahavy, V. Heleg-Shabtai, J. Am. Chem. Soc, 1995, 117, 542-543; [b] E. Zahavy, I. Willner, J. Am. Chem. Soc., 1996, 118, 12 499-12 514.

D.R. Casimirio, L.L. Wong, J.L. Colon, T.E. Zewert, J.H. Richards, I.-J. Chang, J.R. Winkler, H.B. Gray, J. Am. Chem. Soc., 1993, 115, 1485-1489. I. Hamachi, S. Tanaka, S. Shinkai, J. Am. Chem. Soc., 1993, 115, 10458-10459.

T. Hayashi, Y. Hisaeda, Acc. Chem. Res, 2002, 35, 35-43. V. Heleg-Shabtai, T. Gabriel, I. Willner, J. Am. Chem. Soc., 1999, 121, 3220-3221.

[a] I. Hamachi, Y. Tajiri, S. Shinkai, J. Am. Chem. Soc., 1994, 116, 7437-7438;

Commun. 1996, 2205-2206;


30 I. Hamachi, T. Matsugi, K. Wakigawa, S. Shinkai, Inorg. Chem. 1998, 37, 1592-1597.

31 A. Riklin, E. Katz, I. Willner, A. Stocker, A.F. BUckmann, Nature, 1995, 376, 672-675.

32 [a] E. Katz, I. Willner, J. Wang, Electroanal., 2004, 16, 19-44;

[b] C.M. Niemeyer, Angew. Chem. Int. Ed., 2001, 40, 4128-4158.

33 [a] E. Katz, I. Willner, ChemPhysChem, 2004, 5, 1084-1104; [b] E. Katz,

I. Willner, in Nanotechnology -Concepts, Applications and Perspectives (Eds.: C.M. Niemeyer, C.A. Mirkin), Wiley-VCH, Weinheim, Germany, 2004, Chapter 14, 200-226.

34 [a] P. Mulvaney, Langmuir, 1996, 12, 788-800; [b] A.P. Alivisatos, J. Phys. Chem, 1996, 100, 13 226-13 239; [c] L.E. Brus, Appl. Phys. A, 1991, 53, 465-474.

35 H. Grabert, M.H. Devoret, (Eds.), Single Charge Tunneling and Coulomb Blockade Phenomena in Nanostructures, NATO ASI Ser. B, Plenum Press, New York, 1992.

36 [a] V. Kesavan, P.S. Sivanand, S. Chandrasekaran, Y. Koltypin, A. Gedanken, Angew. Chem. Int. Ed., 1999, 38, 3521-3523; [b] R. Schlögl, S.B.A. Hamid, Angew. Chem. Int. Ed., 2004, 43, 1628-1637.

37 C.J. Johnson, E. Dujardin, S.A. Davis, C.J. Murphy, S. Mann, J. Mater. Chem, 2002, 12, 1765-1770.

38 [a] C.J. Murphy, N.R. Jana, Adv. Mater, 2002, 14, 80-82; [b] H.A. Becerril, R.M. Stoltenberg, C.F. Monson,

39 C.C. Chen, C.Y. Chao, Z.H. Lang, Chem. Mater., 2000, 12, 1516-1518.

C.J. Murphy, Adv. Mater, 2003, 15, 414-416; [b] T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science, 2004, 304, 1787-1790.

41 [a] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Webber,

R. Russo, P.D. Yang, Science, 2001, 292, 1897-1899; [b] J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, A.P. Alivisatos, Science, 2001, 292, 2060-2063; [c] N.R. Jana, L. Gearheart, C.J. Murphy, J. Phys. Chem. B, 2001, 105, 4065-4067.

42 [a] S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature, 1997, 386, 474-477; [b] A. Bezryadin, A.R.M. Verschueren, S.J. Tans, C. Dekker, Phys. Rev. Lett., 1998, 80, 4036-4039.

43 [a] C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature, 1996, 382, 607-609; [b] L.M. Demers, C.A. Mirkin, R.C. Mucic, R.A. Reynolds, III,

R.L. Letsinger, R. Elghanian, G. Viswanadham, Anal. Chem. 2000, 72, 5535-5541.

44 G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, J. Am. Chem. Soc., 1999, 121, 8122-8123.

45 V. Pardo-Yissar, E. Katz, J. Wasser-man, I. Willner, J. Am. Chem. Soc.,

47 I. Willner, V. Heleg-Shabtai,

R. Blonder, E. Katz, G. Tao, A.F. BUckmann, A. Heller, J. Am. Chem. Soc, 1996, 118, 10 321-10322.

48 M. Zayats, E. Katz, I. Willner, J. Am. Chem. Soc, 2002, 124, 14 724-14 735.

2004, 43, 3292-3300.

50 [a] D. Philp, J.F. Stoddart, Angew. Chem. Int. Ed., 1996, 35, 1155-1196; [b] D.B. Amabilino, M. Asakawa, P.R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, A. Credi, M. Higuchi, F.M. Raymo, T. Shimizu, J.F. Stoddart, M. Venturi, K. Yase, New J. Chem, 1998, 22, 959-972.

51 M.C.T. Fyfe, J.F. Stoddart, Acc. Chem. Res., 1997, 30, 393-401.

52 S. Menzer, A.J.P. White, D.J. Williams, M. Belohradsky, C. Hamers, F.M. Raymo, A.N. Shipway, J.F. Stoddart, Macromolecules, 1998, 31, 295-307.

53 S.J. Rowan, J.F. Stoddart, Polym. Adv. Technol., 2002, 13, 777-787.

54 A.S. Lane, D.A. Leigh, A. Murphy, J. Am. Chem. Soc., 1997, 119, 11092-11093.

55 I. WILLNER, V. PARDO-YISSAR, E. KATZ, K.T. Ranjit, J. Electroanal. Chem, 2001, 497, 172-177.

56 [a] V. Balzani, M. Gomez-Lopez, J.F. Stoddart, Acc. Chem. Res., 1998, 31, 405-414; [b] M. Asakawa, P.R. Ashton, V. Balzani, C.L. Brown, A. Credi, O.A. Matthews, S.P. Newton, F.M. Raymo, A.N. Shipway, N. Spencer, A. Quick, J.F. Stoddart, A.J.P. White, D.J. Williams, Chem. Eur. J., 1999, 5, 860-875.

M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath, Science, 1999, 285, 391-394; [b] Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath, Chem. Phys. Chem., 2002, 3, 519-525.

58 R.A. Bissel, E. Cordova, A.E. Kaifer, J.F. STODDART, Nature, 1994, 369, 133-137.

59 O.A. Raitman, E. Katz, A.F. BUckmann, I. Willner, J. Am. Chem. Soc., 2002, 124, 6487-6496.

60 P.N. Bartlett, E. Simon, Phys. Chem. Chem. Phys., 2002, 2, 2599-2606.

61 W. Knoll, Annu. Rev. Phys. Chem., 1998, 49, 569-638.

62 A.G. Frutos, R.M. Corn, Anal. Chem, 1998, A70, 449A-455A.

I. Karube, Anal. Chim. Acta, 1998, 368, 71-76; [b] J.M. McDonnell, Curr. Opin. Chem. Biol., 2001, 5, 572-577.

64 D.M. Disley, D.C. Cullen, H.Y. You, L.R. Lower, Biosens. Bioelectron., 1998, 13, 1213-1225.

66 J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley, Phys. Rev. B, 1997, 55, R4921-R4924.

67 [a] W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.-P. Sun, Nano Lett., 2002, 2, 311-314;

X. Zhang, H. Zhang, M. Terrones, J. Mater. Chem., 2004, 14, 37-39.

68 [a] C.V. Nguyen, L. Delzeit, A.M. Cassel, J. Li, J. Han, M. Meyyappan, Nano Lett., 2002, 2, 1079-1081; [b] S.E. Baker, W. Cai, T.L. Lasseter, K.P. Weidkamp, R.J. Hamers, Nano Lett,

R. Naaman, F. Hennrich, M.M. Kappes, Nano Lett, 2003, 3, 153-155.

69 [a] F.L. Cheng, S. Du, B.K. Lin Chinese J. Chem., 2003, 21, 436-441; [b] C. Cai, J. Chen, Anal. Biochem., 2004, 325, 285-292; [c] L. Zhang, G.-C. Zhao, X.-W. Wei, Z.-S. Yang, Chem. Lett., 2004, 33, 86-87.

70 J.J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F.J. Mearns, J.G. Shapter, D.B. Hibbert, J. Am. Chem. Soc., 2003, 125, 9006-9007.

71 K. Besteman, J.O. Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker, Nano Lett,

72 F. Patolsky, Y. Weizmann, i. Willner, Angew. Chem. Int. Ed., 2004, 43, 2113-2117.

74 V. Mujica, A. Nitzan, S. Datta, M.A. Ratner, C.P. Kubiak, J. Phys. Chem. B,

75 Y. Xiao, A.B. Kharitonov, F. Patolsky, Y. Weizmann, i. Willner, Chem. Commun. 2003, 1540-1541.

76 L. Shi, Y. Xiao, i. Willner, Electrochem. Commun., 2004, 6, 1057-1060.

J.F. Hainfeld, i. Willner, Science, 2003, 299, 1877-1881.

78 F. Remacle, R.D. Levine, Chem. Phys. Lett., 2004, 383, 537-543.

79 O. Lioubashevski, V.i. Chegel, F. Patolsky, E. Katz, i. Willner, J. Am. Chem. Soc., 2004, 126, 7133-7143.

80 [a] A. Henglein, J. Lilie, J. Am. Chem. Soc., 1981, 103, 1059-1066; [b] T. Ung, M. Giersig, D. Dunstan, P. Mulvaney, Langmuir, 1997, 13, 1773-1782.

81 [a] A.C. Templeton, J.J. Pietron, R.W. Murray, P. Mulvanay, J. Phys. Chem. B, 2000, 104, 564-570; [b] P. Mulvaney, Lnagmuir, 1996, 12, 788-800.

82 [a] D.A. Schultz, Curr. Opin. Biotechnol., 2003, 14, 13-22; [b] P. Englebienne, A.V. Hoonacker, M. Verhas, Analyst, 2001, 126, 1645-1651.

83 V.L. Davidson, L.H. Jones, Anal. Chim. Acta, 1991, 249, 235-240.

84 V.L. Davidson, Principles and Applications of Quinoproteins, Dekker, New York, 1993.

86 E. Katz, D.D. Schlereth, H.-L. Schmidt, A.A.J. Olsthoorn,

87 O.A. Raitman, F. Patolsky, E. Katz, I. Willner, Chem. Commun., 2002, 1936-1937.

88 C.R. Hess, G.A. Juda, D.M. Dooley, R.N. Amii, M.G. Hill, J.R. Winkler, H.B. Gray, J. Am. Chem. Soc., 2003, 125, 7156-7157.

89 A.I. Yaropolov, V. Malovic, S.D. Varfolomeev, I.V. Berezin, Dokl. Akad. Nauk SSSR, 1979, 249, 13 999-11 401.

90 E. CsOregi, G. JOnsson, L. Gorton, J. Biotechnol., 1993, 30, 315-317.

91 T. Ruzgas, L. Gorton, J. Emneus, E. CsOregi, G. Marko-Varga, Anal. Proc., 1995, 32, 207-208.

92 A.L. Ghindilis, P. Atanasov, E. Wilkins, Electroanalysis, 1997, 9, 661-675.

L. Gorton, G. Marko-Vargas, Anal. Chim. Acta, 1996, 330, 123-138.

G. Marko-Varga, J. Electroanal. Chem, 1995, 391, 41-49.

95 A. Lindgren, F.-D. Munteau, I.G. Gazaryan, T. Ruzgas, L. Gorton, J. Electroanal. Chem., 1998, 458, 113-120.

96 F.A. Armstrong, H.A.O. Hill, N.J. Walton, Q. Rev. Biophys., 1986, 18, 261-322.

97 P.M. Allon, H.A.O. Hill, N.J. Walton, J. Electroanal. Chem., 1984, 178, 69-86.

98 M. Lion-Dagan, I. Ben-Dov, I. Willner, Colloids Surfaces B: Biointerfaces, 1997, 8, 251-260.

99 V. Pardo-Yissar, E. Katz, I. Willner, A.B. Kotlyar, C. Sanders, H. Lill, Faraday Discussions, 2000, 116, 119-134.

100 A.D. Ryabov, V.N. Goral, L. Gorton, E. CsOregi, Chem. Eur. J, 1995, 5, 961-967.

101 H. Zimmermann, A. Lindgren,

W. Schuhmann, L. Gorton, Chem. Eur. J, 2000, 6, 592-599.

102 [a] W.F. DeGrado, Z.R. Wassermann, J.D. Lear, Science, 1989, 243, 622-628; [b] R.B. Hill, W.F. DeGrado, J. Am. Chem. Soc., 1998, 120, 1138-1145.

104 T. Arai, K. Kobata, H. Mihara, T. Fujimoto, N. Nishino, Bull. Chem. Soc. Jpn., 1995, 68, 1989-1998.

105 B.R. Gibney, S.E. Mulholland, F. Rabanal, P.L. Dutton, Proc. Natl. Acad. Sci. U.S.A, 1996, 93, 15 041-15 046.

106 E. Katz, V. Heleg-Shabtai, I. Willner, H.K. Rau, W. Haehnel, Angew. Chem. Int. Ed. Engl., 1998, 37, 3253-3256.

H.K. Rau, W. Haehnel, J. Am. Chem. Soc., 1999, 121, 6455-6468.

108 H.K. Rau, W. Haehnel, J. Am. Chem. Soc., 1998, 120, 468-476.

109 [a] J. Moiroux, P.J. Elving, J.Am. Chem. Soc., 1980, 102, 6533-6538; [b] H.-L. Schmidt, W. Schuhmann, Biosens. Bioelectron, 1996, 11, 127-135.

W. Schuhmann, H.-L. Schmidt, Electroanalysis, 1993, 5, 201-207. [b] D.D. Schlereth, E. Katz, H.-L. Schmidt, Electroanalysis, 1995, 7, 46-54.

111 M. Ohtani, S. Kuwabata, H. Yoneyama, J. Electroanal. Chem., 1997, 422, 45-54.

112 E. Katz, T. LOtzbeyer, D.D. Schlereth, W. Schuhmann, H.-L. Schmidt, J. Electroanal. Chem., 1994, 373, 189-200.

113 I. Willner, A. Riklin, Anal. Chem, 1994, 66, 1535-1539.

119, 9114-9119.

115 M. Zayats, A.B. Kharitonov, E. Katz, A.F. BUckmann, I. Willner, Biosens. Bioelectron., 2000, 15, 671-680.

117 P.A. Adams, in Peroxidases in Chemistry and Biology (Eds.: J. Everse, K.E.

1991, Chapter 7, 171-200.

118 E. Katz, I. Willner, Langmuir, 1997, 13, 3364-3373.

119 A. Narvaez, E. Dominguez, I. Katakis, E. Katz, K.T. Ranjit, I. Ben-Dov,

I. Willner, J. Electroanal. Chem., 1997, 430, 227-233.

I. Willner, J. Chem. Soc., Perkin Trans., 1997, 2, 2645-3652.

121 [a] A. Heller, Acc. Chem. Res., 1990, 23, 128-134; [b] A. Heller, J. Phys. Chem.,

1992, 96, 3579-3587.

122 R. Rajagopalan, A. Aoki, A. Heller, J. Phys. Chem, 1996, 100, 3719-3727.

Y. Zhang, A. Heller, J. Am. Chem. Soc., 2001, 123, 5802-5803.

[b] H.H. Kim, N. Mano, X.C. Zhang, A. Heller, J. Electrochem. Soc., 2003, 150, A209-A213.

125 E. Katz, A.F. Bückmann, I. Willner, J. Am. Chem. Soc., 2001, 123,

10 752-10 753.

126 E. Katz, I. Willner, J. Am. Chem. Soc, 2003, 125, 6803-6813.

127 A.C. Tempelton, W.P. Wuelfing, R.W. Murray, Acc. Chem. Res., 2000, 33, 27-36.

128 G. Maruccio, R. Cingolani, R. Ronaldi, J. Mater. Chem, 2004, 14, 542-554.

129 [a] P. Travascio, Y. Li, A.J. Bennet, D.Y. Wang, D. Sen, Chem. Biol., 1999, 6, 779-787; [b] P. Travascio, P.K. Witting, A.G. Mauk, D. Sen, J. Am. Chem. Soc, 2001, 123, 1337-1348;

A. Dishon M. Kotler, I. Willner, Anal. Chem., 2004, 767, 2152-2156.

Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook

Post a comment