1. Rask, C. The heat transfer in a convection oven—influence on some product characteristics. In: Cereal Science and Technology in Sweden, edited by N.-G. Asp. Lund, Sweden: Lund University, 1988, pp 148-157.

2. Mclver, R. G., D. W. E. Axford, K. H. Colwell, and G. A. H. Elton. Kinetic study of the retrogradation of gelatinised starch. J. Sci. Food Agric. 19:560-563, 1968.

3. Colwell, K. H., D. W. E. Axford, N. Chamberlain, and G. A. H. Elton. Effect of storage temperature on the ageing of concentrated wheat starch gels. J. Sci. Fd Agric. 20:550, 1969.

4. Donovan, J. W. Phase transitions of the starch-water system. Biopolymers 18:263275, 1979.

5. Eliasson, A.-C. Effect of water content on the gelatinization of wheat starch. Starch/ Starke 32:270-272, 1980.

6. Myers, C. D. Study of thermodynamics and kinetics of protein stability by thermal analysis. In: Thermal Analysis of Foods, edited by V. R. Harwalkar and C.-Y. Ma. New York: Elsevier Applied Science, 1990, pp 16-50.

7. Biliaderis, C. G. Thermal analysis of food carbohydrates. In: Thermal Analysis of Foods, edited by V. R. Harwalkar and C.-Y. Ma. New York: Elsevier Applied Science, 1990, pp 168-220.

Bell, L. N., and D. E. Touma. Glass transition temperatures determined using a temperature-cycling differential scanning calorimeter. J. Food Sci. 61:807-810, 828, 1996.

Shiotsubo, T., and K. Takahashi. Changes in enthalpy and heat capacity associated with the gelatinization of potato starch, as evaluated from isothermal calorimetry. Carbohydr. Res. 158:1-6, 1986.

Silverio, J., E. Svensson, A.-C. Eliasson, and G. Olofsson. Isothermal microcal-orimetric studies on starch retrogradation. J. Thermal Analysis 47:1179-1200, 1996.

Kubik, S., and G. Wulff. Characterization and chemical modification of amylose complexes. Starch/Starke 45:220-225, 1993.

Schiraldi, A., L. Piazza, and M. Riva. Bread staling: a calorimetric approach. Cereal Chem. 73:32-39, 1996.

Biliaderis, C. G., C. M. Page, T. J. Maurice, and B. O. Juliano. Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 34:6-14, 1986.

Huang, V. T., L. Haynes, H. Levine, and L. Slade. Glass transitions in starch, gluten and bread as measured. Dielectric spectroscopy and TMA methods. J. Thermal Anal. 47:1289-1298, 1996.

Morris, V. J. Bacterial polysaccharides. In: Bacterial polysaccharides, edited by A. M. Stephen. New York: Marcel Dekker, 1995, pp 341-375. Eliasson, A.-C. Some physico-chemical properties of wheat starch. In: Wheat End-Use Properties. Wheat and Flour Characterization for Specific End-Use, edited by H. Salovaara. Helsinki: University of Helsinki, 1989, pp 355-364. Morrison, W. R., and D. C. Scott. Measurement of the dimensions of wheat starch granule populations using a Coulter Counter with 100-channel analyzer. J. Cereal Sci. 4:13-17, 1986.

Eliasson, A.-C., and R. Karlsson. Gelatinization properties of different size classes of wheat starch granules measured with differential scanning calorimetry. Starch/ Starke 35:130-133, 1983.

Soulaka, A. B., and W. R. Morrison. The amylose and lipid contents, dimensions, and gelatinization characteristics of some wheat starches and their A- and B-granule fraction. J. Sci. Food Agric. 36:709-718, 1985.

Soulaka, A. B., and W. R. Morrison. The bread baking quality of six wheat starches differing in composition and physical properties. J. Sci. Food Agric. 36:719-727, 1985.

Fredriksson, H., J. Silverio, R. Andersson, A.-C. Eliasson, and P. Aman. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr. Polym. 35:119-134, 1998. Hizukuri, S. Starch: analytical aspects. In: Carbohydrates in Food, edited by A.-C. Eliasson. New York: Marcel Dekker, 1996, pp 347-429.

Nakamura, T., M. Yamamori, H. Hirano, S. Hidaka, and T. Nagamine. Production of waxy (amylose-free) wheats. Mol. Gen. Genet. 248:253-259, 1995. Hayakawa, K., K. Tanaka, T. Nakamura, S. Endo, and T. Hoshino. Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): properties of starch gelatinization and retrogradation. Cereal Chem. 74:576-580, 1997.

Eliasson, A.-C., and K. Larsson. Cereals in Breadmaking: A Molecular/Colloidal Approach. New York: Marcel Dekker, 1993.

French, D. Organization of starch granules. In: Starch Chemistry and Technology (2nd ed.), edited by R. L. Whistler, J. N. BeMiller, and E. F. Paschall. Orlando: Academic Press, 1984, pp 183-247.

Eliasson, A.-C. Interactions between starch and lipids studied by DSC. Ther-mochim. Acta 246:343-356, 1994.

Zobel, H. F. Molecules to granules: a comprehensive starch review. Starch/Starke 40:44-50, 1988.

Sarko, A., and H.-C. H. Wu. The crystal structures of A-, B- and C-polymorphs of amylose and starch. Starch/Starke 30:73-78, 1978.

Svensson, E. Crystalline properties of starch. Lund, Sweden: Lund University, 1996.

Cooke, D., and M. J. Gidley. Loss of crystalline and molecular order during starch gelatinization: origin of the enthalpic transition. Carbohydr. Res. 227:103-112, 1992.

Eliasson, A.-C., K. Larsson, S. Andersson, S. T. Hyde, R. Nesper, and H.-G. von Schnering. On the structure of native starch—an analogue to the quartz structure. Starch/Starke 39:147-152, 1987.

de Willigen, A. H. A. The rheology of starch. In: Examination and Analysis of Starch and Starch Products, edited by J. A. Radley. London: Applied Science Publishers, 1976, pp 61-90.

AACC22-10. Approved Methods of the American Association of Cereal Chemists. 8, 1983.

Bloksma, A. H. Rheology of the breadmaking process. Cereal Foods World 35: 228-236, 1990.

Stevens, D. J., and G. A. H. Elton. Thermal properties of the starch/water system. Part I. Measurement of heat of gelatinization by differential scanning calorimetry. Starch/Starke 23:8-11, 1971.

Eliasson, A.-C. Viscoelastic behavior during the gelatinization of starch. I. Comparison of wheat, maize, potato and waxy-barley starches. J. Text. Stud. 17:253-265, 1986.

Eliasson, A.-C., and L. Bohlin. Rheological properties of concentrated wheat starch gels. Starch/Starke 34:267-271, 1982.

Rolee, A., and M. Le Meste. Thermomechanical behavior of concentrated starch-water preparations. Cereal Chem. 74:581-588, 1997.

Kugimiya, M., J. W. Donovan, and R. Y. Wong. Phase transitions of amylose-lipid complexes in starches: a calorimetric study. Starch/Starke 32:265-270, 1980.

Shiotsubo, T., and K. Takahashi. Differential thermal analysis of potato starch gelatinization. Agric. Biol. Chem. 48:9-17, 1984.

Biliaderis, C. G., C. M. Page, and T. J. Maurice. On the multiple melting transitions of starch/monoglyceride systems. Food Chemistry 22:279-295, 1986. Biliaderis, C. G. The structure and interactions of starch with food constituents. Can. J. Physiol. Pharmacol. 69:60-78, 1991.

Seow, C. C., and C. H. Teo. Annealing of granular rice starches—interpretation of the effect on phase transitions associated with gelatinization. Starch/Starke 45: 345-351, 1993.

Hoover, R., and T. Vasanthan. The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches. J. Food Biochem. 17:303-325, 1994.

Rask, C. Thermal properties of dough and bakery products: a review of published data. J. Food Engineering 9:167-193, 1989.

Slade, L., and H. Levine. Non-equilibrium melting of native granular starch: Part I. Temperature location of the glass transition associated with gelatinization of Atype cereal starches. Carbohydr. Polym. 8:183-208, 1988.

Evans, I. D., and D. R. Haisman. The effects of solutes on the gelatinization temperature of potato starch. Starch/Starke 34:224-231, 1982.

Vasanthan, T., and R. S. Bhatty. Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleys. Cereal Chem. 73: 199-207, 1996.

Eliasson, A.-C. On the effects of surface active agents on the gelatinization of starch—a calorimetric investigation. Carbohydr. Polym. 6:463-476, 1986. Eliasson, A.-C., H. Finstad, and G. Ljunger. A study of starch-lipid interactions for some native and modified maize starches. Starch/Starke 40:95-100, 1988. Eliasson, A.-C. Retrogradation of starch as measured by differential scanning calo-rimetry. In: New Approaches to Research on Cereal Carbohydrates, edited by R. D. Hill and L. Munck. Amsterdam: Elsevier Science, 1985, pp 93-98. Russell, P. L. A kinetic study of bread staling by differential scanning calorimetry and compressibility measurements. The effect of added monoglycerides. J. Cereal Sci. 1:297-303, 1983.

Sievert, D., and Y. Pomeranz. Enzyme-resistant starch. II. Differential scanning calorimetry studies on heat-treated starches and enzyme-resistant starch residues. Cereal Chem. 67:217-221, 1990.

Sievert, D., and P. Wiirsch. Thermal behavior of potato amylose and enzyme-resistant starch from maize. Cereal Chem. 70:333-338, 1993. Eerlingen, R. C., G. Cillen, and J. A. Delcour. Enzyme-resistant starch. IV. Effect of endogenous lipids and added sodium dodecyl sulfate on formation of resistant starch. Cereal Chem. 71:170-177, 1994.

Atwell, W. A., L. F. Hood, D. R. Lineback, E. Varriano-Marston, and H. F. Zobel. The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33:306-311, 1988.

Zobel, H. F., and K. Kulp. The staling mechanism. In: Baked Goods Freshness: Technology, Evaluation, and Inhibition of Staling, edited by R. E. Hebeda and H. F. Zobel. New York: Marcel Dekker, 1996, pp 1 -64.

Knightly, W. H. Surfactants. In: Baked Goods Freshness. Technology, Evaluation and Inhibition of Staling, edited by R. E. Hebeda and H. F. Zobel. New York: Marcel Dekker, 1996, pp 65-103.

Silverio, J., H. Fredriksson, R. Andersson, A.-C. Eliasson, and P. Aman. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution. Carbohydr. Polym. 42:175-184, 2000.

Sievert, D., and P. Wiirsch. Amylose chain association based on differential scanning calorimetry. J. Food Sci. 58:1332-1334, 1345, 1993.

Krog, N., S. K. Olesen, H. Toernaes, and T. Joensson. Retrogradation of the starch fraction in wheat bread. Cereal Foods World 34:281-285, 1989. Gudmundsson, M., and A.-C. Eliasson. Retrogradation of amylopectin and the effects of amylose and added surfactants/emulsifiers. Carbohydr. Polym. 13:295315, 1990.

Slade, L., and H. Levine. Recent advances in starch retrogradation. In: Industrial Polysaccharides: The Impact of Biotechnology and Advanced Methodologies, edited by S. S. Stivala, V. Crescenzi, and I. C. M. Dea. New York: Gordon and Breach, 1987, pp 387-430.

Zeleznak, K. J., and R. C. Hoseney. Characterization of starch from bread aged at different temperature. Starch/Starke 39:231-233, 1987.

Longton, J., and G. A. LeGrys. Differential scanning calorimetry studies on the crystallization of aging wheat starch gels. Starch/Starke 33:410-414, 1981. Zeleznak, K. J., and R. C. Hoseney. The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Cehm. 63:407-411, 1986. Ferrero, C., M. N. Martino, and N. E. Zaritzky. Effect of hydrocolloids on starch thermal transitions, as measured by DSC. J. Thermal Anal. 47:1247-1266, 1996. Roulet, P., W. M. MacInnes, D. Gumy, and P. Wiirsch. Retrogradation kinetics of eight starches. Starch/Starke 42:99-101, 1990.

Gudmundsson, M., and A.-C. Eliasson. Some physicochemical properties of oat starches extracted from varieties with different oil content. Acta. Agric. Scand. 39: 101-111, 1989.

Gudmundsson, M., and A.-C. Eliasson. Thermal and viscous properties of rye starch extracted from different varieties. Cereal Chem. 68:172-177, 1991. Kalichevsky, M. T., P. D. Orford, and S. G. Ring. The retrogradation and gelation of amylopectin from various botanical sources. Carbohydr. Res. 198:49-55, 1990. Shi, Y.-C., and P. A. Seib. The structure of four waxy starches related to gelatiniza-tion and retrogradation. Carbohydr. Res. 227:131-145, 1992. Ward, K. E. J., R. C. Hoseney, and P. Seib. Retrogradation of amylopectin from maize and wheat starches. Cereal Chem. 71:150-155, 1994. Russell, P. L. Gelatinization of starches of different amylose/amylopectin content. A study by differential scanning calorimetry. J. Cereal Sci. 6:133-145, 1987. van Soest, J. J. G., D. de Wit, H. Tournois, and J. F. G. Vliegenthart. Retrogradation of potato starch as studied by Fourier transform infrared spectroscopy. Starch/ Starke 46:453-457, 1994.

Roos, Y. H. Phase Transitions in Foods. San Diego: Academic Press, 1995. Nikolaidis, A., and T. P. Labuza. Use of dynamic mechanical thermal analysis (DMTA). Glass transitions of a cracker and its dough. J. Thermal Anal. 47:13151328, 1996.

Slade, L. Starch properties of processed foods: Staling of starch-based products. 69th Annual Meeting of AACC, Minneapolis, Minn., 1984. Kalichevsky, M. T., E. M. Jaroszkiewicz, S. Ablett, J. M. V. Blanshard, and P. J. Lillford. The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr. Polymers 18:77-88, 1992.

Jacobs, H., R. C. Eerlingen, W. Clauwaert, and J. A. Delcour. Influence of annealing on the pasting properties of starches from varying botanical sources. Cereal Chem. 72:480-487, 1995.

Biliaderis, C. G. Non-equilibrium phase transitions of aqueous starch systems. In: Water Relationships in Food, edited by H. Levine and L. Slade. New York: Plenum Press, 1991, pp 251-273.

Eliasson, A.-C., and N. Krog. Physical properties of amylose-monoglyceride complexes. J. Cereal Sci. 3:239-248, 1985.

Kowblansky, M. Calorimetric investigation of inclusion complexes of amylose with long-chain aliphatic compounds containing different functional groups. Macromol-ecules 18:1776-1779, 1985.

Kugimiya, M., and J. W. Donovan. Calorimetric determination of the amylose content of starches based on formation and melting of the amylose-lysolecithin complex. J. Food Sci. 46:765-770, 777, 1981.

Sievert, D., and J. Holm. Determination of amylose by differential scanning calo-rimetry. Starch/Starke 45:136-139, 1993.

Mestres, C., F. Matencio, B. Pons, M. Yajid, and G. Fliedel. A rapid method for the determination of amylose content using differential scanning calorimetry. Starch/Starke 48:2-6, 1996.

Morrison, W. R., and A. M. Coventry. Extraction of lipids from cereal starches with hot aqueous alcohols. Starch/Starke 37:83-87, 1985. Bjorck, I., N.-G. Asp, D. Birkhed, A.-C. Eliasson, L.-B. Sjoberg, and I. Lundquist. Effects of processing on starch availability in vitro and in vivo. II. Drum-drying of wheat flour. J. Cereal Sci. 2:165-178, 1984.

Villwock, V. K., A.-C. Eliasson, J. Silverio, and J. N. BeMiller. Starch-lipid interactions in common, waxy, ae du, and ae su2 maize starches examined by differential scanning calorimetry. Cereal Chem. 76:292-298, 1999. Evans, I. D. An investigation of starch/surfactant interactions using viscometry and differential scanning calorimetry. Starch/Starke 38:227-235, 1986. Krog, N. Amylose complexing effect of food grade emulsifiers. Starch/Starke 23: 206, 1971.

Eliasson, A.-C., and G. Ljunger. Interactions between amylopectin and lipid additives during retrogradation in a model system. J. Sci. Food Agric. 44:353-361, 1988.

Gudmundsson, M. Effects of an added inclusion-amylose complex on the retrogradation of some starches and amylopectin. Carbohydr. Polym. 17:299-304, 1992. Russell, P. L. The aging of gels from starches of different amylose/amylopectin content studied by differential scanning calorimetry. J. Cereal Sci. 6:147-158, 1987.

Eliasson, A.-C. Lipid-carbohydrate interactions. In: Interactions: The Keys to Cereal Quality, edited by R. J. Hamer and R. C. Hoseney. St. Paul: American Association of Cereal Chemists, 1998, pp 47-79.

Eliasson, A.-C., and P.-O. Hegg. Thermal stability of gluten. Cereal Chem. 57: 436-437, 1981.

Hoseney, R. C., K. Zeleznak, and C. S. Lai. Wheat gluten: a glassy polymer. Cereal Chem. 63:285-286, 1986.

99. Tatham, A. S., and P. R. Shewry. The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of a-, P-, y-gliadins. J. Cereal Sci. 3: 103-113, 1985.

100. Schofield, J. D., R. C. Bottomley, M. F. Timms, and M. R. Booth. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. J. Cereal Sci. 1:241-253, 1983.

101. Ma, C.-Y., and V. R. Harwalkar. Chemical characterization and functionality assessment of oat protein fractions. J. Agric. Food Chem. 32:144-149, 1984.

102. Kalichevsky, M. T., E. M. Jaroszkiewicz, and J. M. V. Blanshard. Glass transition of gluten. 1: Gluten and gluten-sugar mixtures. Int. J. Biol. Macromol. 14:257266, 1992.

103. Kalichevsky, M. T., E. M. Jaroszkiewicz, and J. M. V. Blanshard. Glass transition of gluten. 2: The effect of lipids and emulsifiers. Int. J. Biol. Macromol. 14:267273, 1992.

104. Kokini, J. L., A. M. Cocero, H. Madeka, and E. de Graaf. The development of state diagrams for cereal proteins. Trends Food Sci. Technol. 5:281-288, 1994.

105. Noel, T. R., R. Parker, S. G. Ring, and A. S. Tatham. The glass-transition behavior of wheat gluten proteins. Int. J. Biol. Macromol. 17:81-85, 1995.

106. Doescher, L. C., R. C. Hoseney, and G. A. Milliken. A mechanism for cookie dough setting. Cereal Chem. 64:158-163, 1987.

107. Larsson, K., and P. J. Quinn. Physical properties: structural and physical characteristics. In: The Lipid Handbook (2nd ed.), edited by F. D. Gunstone, J. L. Harwood, and F. B. Padley. London: Chapman & Hall, 1994, pp 401-485.

108. Daniels, N. W. R. Some effects of water in wheat flour doughs. In: Water Relations of Foods, edited by R. B. Duckworth. London: Academic Press, 1975, pp 573-586.

109. Morrison, W. R., D. L. Mann, W. Soon, and A. M. Coventry. Selective extraction and quantitative analysis of non-starch and starch lipids from wheat flour. J. Sci. Food Agric. 26:507-521, 1975.

110. Carlson, T., K. Larsson, and Y. Miezis. Phase equilibria and structures in the aqueous system of wheat lipids. Cereal Chem. 55:168-179, 1978.

111. Girhammar, U., and B. M. Nair. Certain physical properties of water soluble non-starch polysaccharides from wheat, rye, triticale, barley and oats. Food Hydrocol-loids 6:329-343, 1992.

112. Ghiasi, K., R. C. Hoseney, and E. Varriano-Marston. Effect of flour components and dough ingredients on starch gelatinization. Cereal Chem. 60:58-61, 1983.

113. Stapley, A. G., L. F. Gladden, and P. J. Fryer. A differential scanning calorimetry study of wheat grain cooking. Int. J. Food Sci. Tech. 32:473-486, 1997.

114. Fisher, D. K., and D. B. Thompson. Retrogradation of maize starch after thermal treatment within and above the gelatinization temperature range. Cereal Chem. 74: 344-351, 1997.

115. Holm, J., I. Lundquist, I. Bjorck, A.-C. Eliasson, and N.-G. Asop. Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats. Am. J. Clin. Nutr. 47:1010-1016, 1988.

116. Eliasson, A.-C. Differential scanning calorimetry studies on wheat starch-gluten mixtures. I. Effect of gluten on the gelatinization of wheat starch. J. Cereal Sci. 1: 199-205, 1983.

Erdogdu, N., Z. Czuchajowska, and Y. Pomeranz. Wheat flour and defatted milk fractions characterized by differential scanning calorimetry. I. DSC of flour and milk fractions. Cereal Chem. 72:70-75, 1995.

Eliasson, A.-C. Differential scanning calorimetry studies on wheat starch-gluten mixtures. II. Effect of gluten and sodium stearoyl lactylate on starch crystallization during aging of wheat starch gels. J. Cereal Sci. 1:207-213, 1983. Schweizer, T. F., S. Reimann, J. Solms, A.-C. Eliasson, and N.-G. Asp. Influence of drum-drying and twin-screw extrusion cooking on wheat carbohydrates. II. Effect of lipids on physical properties, degradation and complex formation of starch in wheat flour. J. Cereal Sci. 4:249-260, 1986.

Biliaderis, C. G., and H. D. Seneviratne. On the supermolecular structure and meta-stability of glycerol monostearate-amylose complex. Carbohydr. Polym. 13:185206, 1990.

Gudmundsson, M., A.-C. Eliasson, S. Bengtsson, and P. Aman. The effects of water soluble arabinoxylan on gelatinization and retrogradation of starch. Starch/Starke 43:5-10, 1991.

Biliaderis, C. G., I. Arvanitoyannis, M. S. Izydorczyk, and D. J. Prokopowich. Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch/Starke 49:278-283, 1997. Buck, J. S., and C. E. Walker. Sugar and sucrose ester effects on maize and wheat starch gelatinization patterns by differential scanning calorimeter. Starch/Starke 40: 353-356, 1988.

Eliasson, A.-C. A calorimetric investigation of the influence of sucrose on the gelatinization of starch. Carbohydr. Polym. 18:131-138, 1992.

Spies, R. D., and R. C. Hoseney. Effect of sugars on starch gelatinization. Cereal Chem. 59:128-131, 1982.

Wootton, M., and A. Bamunuarachchi. Application of differential scanning calo-rimetry to starch gelatinization. III. Effect of sucrose and sodium chloride. Starch/ Starke 32:126-129, 1980.

Silverio, J. Retrogradation Properties of Starch. Lund, Sweden: Lund University, 1997. Riisom, T., N. Krog, and J. Eriksen. Amylose complexing capacities of cis- and trans-unsaturated monoglycerides in relation to their functionality in bread. J. Cereal Sci. 2:105-118, 1984.

Cloke, J. D., J. Gordon, and E. A. Davis. Enthalpy changes in model cake systems containing emulsifiers. Cereal Chem. 60:143-146, 1983.

da Cruz Francisco, J., J. Silverio, A.-C. Eliasson, and K. Larsson. A comparative study of gelatinization of cassava and potato starch in an aqueous lipid phase (L2) compared to water. Food Hydrocolloids 10:317-322, 1996. Le Roux, C., D. Marion, H. Bizot, and D. J. Gallant. Thermotropic behavior of coconut oil during wheat dough mixing: evidence for a solid-liquid phase separation according to mixing temperature. Food Structure 9:123-131, 1990. Lauro, M., T. Suortti, K. Autio, P. Linko, and K. Poutanen. Accessibility of barley starch granules to a-amylase during different phases of gelatinization. J. Cereal Sci. 17:125-136, 1993.

Jacobs, H. Impact of Annealing on Physico-Chemical Properties of Starch. Leuven, Belgium: Katholieke Universiteit Leuven, 1998.

Evers, A. D., G. J. Baker, and D. J. Stevens. Production and measurement of starch damage in flour. Part I. Damage due to rollermilling of semolina. Starch/Starke 36:309-312, 1984.

AACC76-30A. Approved Methods of the American Association of Cereal Chemists. St. Paul: American Association of Cereal Chemists, 1983. AACC76-31. Approved Methods of the American Association of Cereal Chemists. St Paul: American Association of Cereal Chemists, 1983.

Morrison, W. R., R. F. Tester, and M. J. Gidley. Properties of damaged starch granules. II. Crystallinity, molecular order and gelatinization of ball-milled starch. J. Cereal Sci. 19:209-217, 1994.

Eliasson, A.-C., and M. Gudmundsson. Starch: physicochemical and functional aspects. In: Carbohydrates in Food, edited by A.-C. Eliasson. New York: Marcel Dekker, 1995, p 431.

Larsson, I., and A.-C. Eliasson. Annealing of starch at an intermediate water content. Starch/Starke 43:227-231, 1991.

Knutson, C. A. Annealing of maize starches at elevated temperatures. Cereal Chem. 67:376-384, 1990.

Hoover, R., and T. Vasanthan. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydr. Res. 252:33-53, 1994.

Lorenz, K., and K. Kulp. Steeping of starch at various temperatures—effects on functional properties. Starch/Starke 32:181-186, 1980.

Zamponi, R. A., S. A. Giner, C. E. Lupano, and M. C. Anon. Effect of heat on thermal and functional properties of wheat. J. Cereal Sci. 12:279-287, 1990. Tester, R. F., W. R. Morrison, R. H. Ellis, J. R. Piggott, G. R. Batts, T. R. Wheeler, J. I. L. Morrison, P. Hadley, and D. A. Ledward. Effect of elevated growth temperature and carbon dioxide levels on some physicochemical properties of wheat starch. J. Cereal Sci. 22:63-71, 1995.

Bloksma, A. H. Effect of heating rate on viscosity of wheat flour doughs. J. Texture Stud. 10:261-269, 1980.

Matsoukas, N. P., and W. Morrison. Breadmaking quality of ten Greek bread-wheats. II. Relationships of protein, lipid and starch components to baking quality. J. Sci. Food Agric. 55:87-101, 1991.

Eliasson, A.-C., M. Gudmundsson, and G. Svensson. Thermal behavior of wheat starch in flour—relation to flour quality. Lebensm.-Wiss. u.-Technol. 28:227-235, 1995.

Johansson, E., and G. Svensson. Influences of yearly weather variation and fertilizer rate on bread-making quality in Swedish wheats containing HMW glutenin subunits 2 + 12 or 5 + 10 cultivated during the period 1990-96. J. Agric. Sci., 132:13-22, 1999.

Slade, L., H. Levine, M. Wang, and J. Ievolella. DSC analysis of starch thermal properties related to functionality in low-moisture baked goods. J. Thermal Anal. 47:1299-1314, 1996.

Varriano-Marston, E., V. Ke, G. Huang, and J. Ponte, Jr. Comparison of methods to determine starch gelatinization in bakery food. Cereal Chem. 57:242-248, 1980. Wolters, M. G. E., and J. W. Cone. Prediction of degradability of starch by gelatini-

zation enthalpy as measured by differential scanning calorimetry. Starch/Starke 44: 14-18, 1992.

Bushuk, W., and V. K. Mehrotra. Studies of water binding by differential thermal analysis. II. Dough studies using melting mode. Cereal Chem. 54:320-325, 1977. Kulp, K. Biochemical and biophysical principles of freezing. In: Frozen and Refrigerated Doughs and Batters, edited by K. Kulp, K. Lorenz, and J. Briimmer. St. Paul: American Association of Cereal Chemists, 1995, pp 63-89. Kline, L., and T. F. Sugihara. Factors affecting the stability of frozen bread doughs. I. Prepared by the straight dough method. Bakers Dig. 42(5):44-50, 1968. Hsu, K. H., R. C. Hoseney, and P. A. Seib. Frozen dough. I. Factors affecting stability of yeasted doughs. Cereal Chem. 56:419-424, 1979. Rasanen, J., H. Harkonen, and K. Autio. Freeze-thaw stability of prefermented frozen lean wheat doughs: the effect of flour quality and fermentation time. Cereal Chem. 72:637-642, 1995.

Rasanen, J., T. Laurikainen, and A. Autio. Fermentation stability and pore size distribution of frozen prefermented lean wheat doughs. Cereal Chem. 74:56-62, 1997.

Rasanen, J., J. M. V. Blanshard, J. R. Mitchell, W. Derbyshire, and K. Autio. Properties of frozen wheat doughs at subzero temperatures. J. Cereal Sci. 28:7-74, 1998. Mizukoshi, M., T. Kawada, and N. Matsui. Model studies of cake baking. I. Continuous observations of starch gelatinization and protein coagulation during baking. Cereal Chem. 56:305-309, 1979.

Donovan, J. W. A study of the baking process by differential scanning calorimetry. J. Sci. Food Agric. 28:571-578, 1977.

Czuchajowska, Z., and Y. Pomeranz. Differential scanning calorimetry, water activity, and moisture contents in crumb center and near-crust zones of bread during storage. Cereal Chem. 66:305-309, 1989.

LeMeste, M., V. T. Huang, J. Panama, G. Anderson, and R. Lentz. Glass transition of bread. Cereal Foods World 37:264-267, 1992.

Willhoft, E. M. A. Bread staling. I. Experimental study. J. Sci. Food Agric. 22: 176-180, 1971.

Mita, T. Effect of aging on the rheological properties of gluten gel. Agric. Biol. Chem. 54:927-935, 1990.

Martin, M. L., K. J. Zeleznak, and R. C. Hoseney. A mechanism of bread firming. I. Role of starch swelling. Cereal Chem. 68:498-503, 1991. Giovanelli, G., C. Peri, and V. Borri. Effects of baking temperature on crumb-staling kinetics. Cereal Chem. 74:710-714, 1997.

Keetels, C. J. A. M., K. A. Visser, T. van Vliet, A. Jurgens, and P. Walstra. Structure and mechanics of starch bread. J. Cereal Sci. 24:15-25, 1996.

Keetels, C. J. A. M., T. van Vliet, and P. Walstra. Relationship between the sponge structure of starch bread and its mechanical properties. J. Cereal Sci. 24:27-31,

Was this article helpful?

0 0
Gluten Free Living Secrets

Gluten Free Living Secrets

Are you sick and tired of trying every weight loss program out there and failing to see results? Or are you frustrated with not feeling as energetic as you used to despite what you eat? Perhaps you always seem to have a bit of a

Get My Free Ebook

Post a comment