Pathway Of Secretion In Mammalian Cells Recent Developments Kaufman 1999

1. James DC, Baker KN. Glycosylation of recombinant proteins. In: Drew SW, ed. Encyclopedia of Bioprocess Technology: Fermentation, Biocatalyst, and Bioseparation. New York: John Wiley & Sons, 1999:1336-1349.

2. Kronman C, Chitlaru T, Elhanany E, Velan B, Shafferman A. Hierarchy of post-transla-tional modifications involved in the circulatory longevity of glycoproteins—demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J Biol Chem 2000; 275:29488-29502. Jenkins N, Castro P, Menon S, Ison A, Bull A. Effect of lipid supplements on the production and glycosylation of recombinant interferon-g expressed in CHO cells. Cyto-technology 1994; 15:209-215.

Geisow MJ. Glycoprotein glycans—roles and controls. Trends Biotechnol 1992; 10:333-335.

Liu DTY. Glycoprotein pharmaceuticals—scientific and regluatory considerations, and the United States Orphan Drug Act. Trends Biotechnol 1992; 10:114-120. Bill RM, Revers L, Wilson IBH. Protein Glycosylation. Boston, MA: Kluwer Academic Publishers, 1998.

Goochee CF, Gramer MJ, Andersen DC, Bahr JB, Rasmussen JR. The oligosacchar-ides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio/Technology 1991; 9:1347-1355. Jenkins N, Parekh RB, James DC. Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 1996; 14:975-981.

Lis H, Sharon N. Protein glycosylation: structural and functional aspects. Eur J Bio-chem 1993; 218:1-27.

Reuter G, Gabius HJ. Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol Life Sci 1999; 55:368-422.

Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001; 291:2364-2369.

Ashford DA, Alafi CD, Gamble VM, Mackay DJG, Rademacher TW, Williams PJ, Dwek RA, Barclay AN, Davis SJ, Somoza C, Ward HA, Williams AF. Site-specific gly-cosylation of recombinant rat and human soluble CD4 variants expressed in Chinese hamster ovary cells. J Biol Chem 1993; 268:3260-3267.

Lustbader JW, Birken S, Pollak S, Chait BT, Mirza UA, Ramnarain S, Canfield RE, Brown JM. Expression of human chorionic gonadotropin uniformly labeled with NMR isotopes in Chinese hamster ovary cells: An advance toward rapid determination of glycoprotein structures. J Biomol NMR 1996; 7:295-304.

Comer FL, Hart GW. O-GlcNAc and the control of gene expression. Biochim Biophys Acta 1999; 1473:161-171.

Lisowska E. The role of glycosylation in protein antigenic properties. Cell Mol Life Sci 2002; 59:445-455.

Prati EGP, Matasci M, Suter TB, Dinter A, Sburlati AR, Bailey JE. Engineering of coordinated up- and down-regulation of two glycosyltransferases of the O-glycosylation pathway in Chinese hamster ovary (CHO) cells. Biotechnol Bioeng 2000; 68:239-244. Joziasse DH, Oriol R. Xenotransplantation: the importance of the Galal, 3Gal epitope in hyperacute vascular rejection. Biochim Biophys Acta-Mol Basis Dis 1999; 1455: 403-418.

Jenkins N, Curling EMA. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol 1994; 16:354-364.

Bulleid NJ, Bassel-Duby RS, Freedman RB, Sambrook JF, Gething M-JH. Cell-free synthesis of enzymically active tissue-type plasminogen activator. Biochem J 1992; 286:275-280.

Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science 2001; 291:2351-2356.

Dennis JW, Granovsky M, Warren CE. Protein glycosylation in development and disease. BioEssays 1999; 21:412-421.

Gerken TA, Owens CL, Pasumarthy M. Effects of O-glycosylation on protein structure. In: Arland T, Hotchkiss J, eds. Techniques in Glycobiology. New York: Marcel Dek-ker, 1997:247-269.

Jentoft N. Why are proteins O-glycosylated? Trends Biochem Sci 1990; 15:291-294.

24. Kaufman RJ. Secretion from animal cells. In: Drew SW, eds. Encyclopedia of Biopro-cess Technology: Fermentation, Biocatalyst, and Bioseparation. New York: John Wiley & Sons, 1999:2366-2378.

25. Helenius J, Aebi M. Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum 2002; 13:171-178.

26. Messner P. Bacterial glycoproteins. Glycoconjugate Journal 1997; 14:3-11.

27. Kalsner I, Schneider F-J, Geyer R, Ahorn H, Mauer-Fogy I. Comparison of the carbohydrate moieties of recombinant soluble Fce receptor (sFceRII/sCD23) expressed in Saccaromyces cerevisiae and Chinese hamster ovary cells. Different O-glycosylation sites are used by yeast and mammalian cells. Glycoconjug J 1992; 9:209-216.

28. Yang Y, Bergmann C, Benen J, Orlando R. Identification of the glycosylation site and glycan structures of recombinant endopolygalacturonase II by mass spectrometry. Rapid Commun Mass Spectrom 1997; 11:1257-1262.

29. Walsh G. Biopharmaceutical benchmarks. Nat Biotechnol 2000; 18:831-833.

30. Zhu A, Wang Z-K, Beavis R. Structural studies of a-N-acetylgalactosaminidase: effect of glycosylation on the level of expression, secretion efficiency, and enzyme activity. Arch Biochem Biophys 1998; 352:1-8.

31. Miele RG, Nilsen SL, Brito T, Bretthauer RK, Castellino FJ. Glycosylation properties of the Pichia pastoris expressed recombinant kringle-2 domain of tissue-type plasminogen activator. Biotechnol Appl Biochem 1997; 25:151-157.

32. Murphy KP, Gagne P, Pazmany C, Moody MD. Expression of human interleukin-17 in Pichia pastoris: purification and characterization. Protein Expr Purif 1998; 12:208-214.

33. Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Current Opinion, in Biotechnology 2002; 13:329-332.

34. Altmann F, Staudacher E, Wilson IBH, Marz L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjug J 1999; 16:109-123.

35. Hooker AD, James DC. Monitoring recombinant glycoprotein heterogeneity. In: Jenkins N, ed. Animal Cell Biotechnology. Vol. 8. Totowa, NJ: Humana Press Inc., 1999:289-298.

36. Marchal I, Jarvis DL, Cacan R, Verbert A. Glycoproteins from insect cells: sialylated or not? Biol Chem 2001; 382:151-159.

37. Chen Z-Y, Sun J-X, Li J-H, He C, Lu C-L, Wu X-F. Preparation of recombinant human GDNF by baculovirus expression system and analysis of its biological activities. Biochem Biophys Res Commun 2000; 273:902-906.

38. Zhang FM, Murhammer DW, Linhardt RJ. Enzyme kinetics and glycan structural characterization of secreted alkaline phosphatase prepared using the baculovirus expression vector system. Appl Biochem Biotechnol 2002; 101:197-210.

39. Ailor E, Takahashi N, Tsukamoto Y, Masuda K, Rahman BA, Jarvis DL, Lee YC, Betenbaugh MJ. N-Glycan patterns of human transferrin produced in Trichoplusia ni insect cells: effects of mammalian galactosyltransferase. Glycobiology 2000; 10:837847.

40. Kusnadi AR, Nikolov ZL, Howard JA. Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng 1997; 56:473-484.

41. Reuter G, Gabius H-J. Sialic acids: structure—analysis—metabolism—occurence— recognition. Biol Chem 1996; 377:325-342.

42. Ma JKC, Hein MB. Immunotherapeutic potential of antibodies produced in plants. Trends Biotechnol 1995; 13:522-527.

43. Bardor M, Faye L, Lerouge P. Analysis of the N-glycosylation of recombinant glycoproteins produced in transgenic plants. Trends Plant Sci 1999; 4:376-380.

44. Kemp PA, Jenkins N, Clark AJ, Freedman RB. The glycosylation of human recombinant alpha-1-antitrypsin expressed in transgenic mice. Biochem Soc Trans 1996; 24:S339-S339.

Ko JH, Lee CS, Kim KH, Pang MG, Koo JS, Fang NZ, Koo DB, Oh KB, Youn WS, Zheng GD, Park JS, Kim SJ, Han YM, Choi IY, Lim J, Shin ST, Jin SW, Lee KK, Yoo OJ. Production of biologically active human granulocyte colony stimulating factor in the milk of transgenic goat. Transgenic Res 2000; 9:215-222.

McClain DA, Alexander T, Cooksey RC, Considine RV. Hexosamines stimulate leptin production in transgenic mice. Endocrinology 2000; 141:1999-2002. Coulibaly S, Besenfelder U, Miller I, Zinovieva N, Lassnig C, Kotler T, Jameson JL, Gemeiner M, Muller M, Brem G. Expression and characterization of functional recombinant bovine follicle-stimulating hormone (boFSH alpha/beta) produced in the milk of transgenic rabbits. Molecular Reproduction and Development 2002; 63:300-308. Rohricht P. Transgenic protein production: part 2: process economics. BioPharm 1999:52-54. January 12, 2003. January 12, 2003. January 12, 2003.

Grabenhorst E, Hoffmann A, Nimtz M, Zettlmeissl G, Conradt HS. Construction of stable BHK-21 cells coexpressing human secretory glycoproteins human Gal(b1-4)GlcNAc-a2,6-sialyltransferase. Eur J Biochem 1995; 232:718-725. Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC. Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 2001; 73:188-202.

Sheeley DM, Merrill BM, Taylor LCE. Characterization of monoclonal antibody gly-cosylation: comparison of expression systems and identification of terminal a-linked Galactose. Anal Biochem 1997; 247:102-110.

Lamotte D, Buckberry L, Monaco L, Soria M, Jenkins N, Engasser J-M, Marc A. Na-butyrate increases the production and a2,6-sialylation of recombinant interferon-g expressed by a2,6-sialyltransferase engineered CHO cells. Cytotechnology 1999; 29:55-64.

Grabenhorst E, Schlenke P, Pohl S, Nimtz M, Conradt HS. Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconjug J 1999; 16:81-97.

Monaco L, Marc N, Eon-Duval A, Acerbis G, Distefano G, Lamotte D, Engasser J-M, Soria M, Jenkins N. Genetic engineering of a2,6-sialyltransferase in recombinant CHO cells and its effects on the sialylation of recombinant interferon-g. Cytotechnology 1996; 22.

Umafia P, JeanMairet J, Bailey JE. Tetracycline-regulated overexpression of glycosyl-transferases in Chinese hamster ovary cells. Biotechnol Bioeng 1999; 65:542-549. Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 1999; 17:1116-1121.

Yang M, Butler M. Effects of ammonia and glucosamine on the heterogeneity of ery-thropoietin glycoforms. Biotechnol Prog 2002; 18:129-138.

Yang M, Butler M. Effect of ammonia on CHO cell growth, erythropoietin production and glycosylation. Biotechnol Bioeng 2000; 68:370-380.

Yang M, Butler M. Effect of ammonia on the glycosylation of human recombinant ery-thropoietin in culture. Biotechnol Prog 2000; 16:751-759.

Hills AE, Patel A, Boyd P, James DC. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NSO cells. Biotechnol Bioeng 2001; 75:239-249. Chuppa S, Tsai Y-S, Yoon S, Shackleford S, Rozales C, Bhat R, Tsay G, Matanguihan C, Konstantinov K, Naveh D. Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells. Biotechnol Bioeng 1997; 55:328-338.

65. Kaufmann H, Mazur X, Fussenegger M, Bailey J. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 1999; 63:573-582.

66. Patel TP, Parekh RG, Poellering BJ, Prior CP. Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem J 1992; 285:839845.

67. Hahn TJ, Goochee CF. Growth-associated glycosylation of transferrin secreted by HepG2 cells. J Biol Chem 1992; 267:23982-23987.

68. Maiorella BL, Winkelhake J, Young J, Moyer B, Bauer R, Hora M, Andya J, Thomson J, Patel T, Parekh R. Effect of culture conditions on IgM antibody structure, pharmacokinetics and activity. Biotechnology 1993; 11:387-392.

69. Robinson DK, Chan CP, Ip CY, Tsai PK, Tung J, Seamans TC, Lenny AB, Lee DK, Irwin J, Silberklang M. Characterization of a recombinant antibody produced in the course of a high yield fed-batch process. Biotechnol Bioeng 1994; 44:727-735.

70. Hooker AD, Goldman MH, Markham NH, James DC, Ison AP, Bull AT, Strange PG, Salmon I, Baines AJ, Jenkins N. N-Glycans of recombinant human interferon-g change during batch culture of Chinese hamster ovary cells. Biotechnol Bioeng 1995; 48:639648.

71. Hooker AD, Green NH, Baines AJ, Bull AT, Jenkins N, Strange PG, James DC. Constraints on the transport and glycosylation of recombinant IFN-g in Chinese hamster ovary and insect cells. Biotechnol Bioeng 1999; 63:559-572.

72. Altamirano C, Illanes A, Casablancas A, Gamez X, Cairo JJ, Godia C. Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 2001; 17:1032-1041.

73. Altamirano C, Cairo JJ, Godia F. Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 2001; 76:351-360.

74. Gawlitzek M, Conradt HS, Wagner R. Effect of different cell culture conditions on the polypeptide integrity and N-glycosylation of a recombinant model glycoprotein. Bio-technol Bioeng 1995; 46:536-544.

75. Gawlitzek M, Valley U, Nimtz M, Wagner R, Conradt HS. Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J Biotechnol 1995; 42:117-131.

76. Hayter PM, Curling EMA, Baines AJ, Jenkins N, Salmon I, Strange PG, Tong MM, Bull AT. Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon-g. Biotechnol Bioeng 1992; 39:327-335.

77. Hayter PM, Curling EMA, Gould ML, Baines AJ, Jenkins N, Salmon I, Strange PG, Bull AT. The effect of the dilution rate on CHO cell physiology and recombinant inter-feron-g production in glucose-limited chemostat culture. Biotechnol Bioeng 1993; 42:1007-1085.

78. Castro PML, Ison AP, Hayter PM, Bull AT. The macroheterogeneity of recombinant human interferon-g produced by Chinese hamster ovary cells is affected by the protein and lipid content of the culture medium. Biotechnol Appl Biochem 1995; 21:87-100.

79. Barnabe N, Butler M. The relationship between intracellular UDP-N-acetyl hexosa-mine nucleotide pool and monoclonal antibody production in a mouse hybridoma. J Biotechnol 1998; 60:67-80.

80. Gu X, Wang DIC. Improvement of interferon-g sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 1998; 58:642-648.

81. Gawlitzek M, Ryll T, Lofgren J, Sliwkowski MB. Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Bio-technol Bioeng 2000; 68:637-646.

82. Altamirano C, Paredes C, Cairo JJ, Godia F. Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog 2000; 16:69-75.

Andersen DC, Bridges T, Gawlitzek M, Hoy C. Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Bio-technol Bioeng 2000; 70:25-31.

Santell L, Ryll T, Etcheverry T, Santoris M, Dutina G, Wang A, Gunson J, Warner TG. Aberrant metabolic sialyation of recombinant proteins expressed in Chinese hamster ovary cells in high productivity cultures. Biochem Biophys Res Commun 1999; 258:132-137.

Wang MD, Yang M, Huzel N, Butler M. Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotechnol Bioeng 2002; 77:194-203.

Cruz HJ, Conradt HS, Dunker R, Peixoto CM, Cunha AE, Thomaz M, Burger C, Dias EM, Clemente J, Moreira JL, Rieke E, Carrondo MJT. Process development of a recombinant antibody/interleukin-2 fusion protein expressed in protein-free medium by BHK cells. J Biotechnol 2002; 96:169-183.

Andersen DC, Goochee CF, Cooper G, Weitzhandler M. Monosaccharide and oligo-saccharide analysis of isoelectric focusing-separated and blotted granulocyte colony-stimulating factor glycoforms using high-pH anion exchange chromatography with pulsed amperometric detection. Glycobiology 1994; 4:459-467.

Miller WM, Blanch HW, Wilke CR. A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate, and pH. Biotechnology and Bioengineering 1988; 32:947-965. Borys MC, Linzer DIH, Papoutsakis ET. Culture pH affects expression rates and gly-cosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Bio/Technology 1993; 11:720-724.

Borys MC, Linzer DIH, Papoutsakis ET. Ammonia affects the glyco-sylation pattern of recombinant mouse placental lactogen-I by Chinese hamster ovary cells in a pH dependent manner. Biotechnol Bioeng 1994; 43:505-514. Valley U, Nimtz M, Conradt HS, Wagner R. Incorporation of ammonium into intracellular UDP-activated N-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnol Bioeng 1999; 64:401-417.

Kimura R, Miller WM. Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells. Biotechnol Bioeng 1996; 52:152-160. Kimura R, Miller WM. Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol Prog 1997; 13:311-317.

Schmelzer AE, Miller WM. Effects of osmoprotectant compounds on NCAM polysia-lylation under hyperosmotic stress and elevated pCO2. Biotechnol Bioeng 2002; 77: 359-368.

Delorme E, Lorenzini T, Giffin J, Martin F, Jacobsen F, Boone T, Elliott S. Role of Glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 1992; 31:9871-9876.

Takeuchi M, Inoue N, Strickland TW, Kubota M, Wada M, Shimizu R, Hoshi S, Kozutsumi H, Takasaki S, Kobata A. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc Natl Acad Sci USA 1989; 86:7819-7822.

Tsuda T, Kawanishi G, Ueda M, Masuda S, Sasaki R. The role of carbohydrate in recombinant human erythropoietin. Eur J Biochem 1990; 188:405-411. Do KY, Fregien N, Pierce M, Cummings RD. Modification of glycoproteins by N-acetylglucosaminyltransferase V is greatly influenced by accessibility of the enzyme to oligosaccharide acceptors. J Biol Chem 1994; 269:23456-23464.

Rueckert RR, Mueller GC. Effect of oxygen tension on HeLa cell growth. Cancer Res 1960; 60:944-949.

Ozturk SS, Palsson BO. Effects of dissolved oxygen on hybridoma cell growth, metabolism, and antibody production kinetics in continuous culture. Biotechnol Prog 1990; 6:437-446.

101. Lin AA, Kimura R, Miller WM. Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol Bioeng 1993; 42:339-350.

102. Chotigeat W, Watanapokasin Y, Mahler S, Gray PP. Role of enviromental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO. Cytotechnology 1994; 15:217-221.

103. Jan DCH, Petch DA, Huzel N, Butler M. The effect of dissolved oxygen on the metabolic profile of a murine hybridoma grown in serum-free medium in continuous culture. Biotechnol Bioeng 1997; 54:153-164.

104. Kunkel JP, Jan DCH, Jamieson JC, Butler M. Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol 1998; 62:55-71.

105. Reuveny S, Velez D, Macmillan JD, Miller L. Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Methods 1986; 86:53-59.

106. Furukawa K, Ohsuye K. Effect of culture temperature on a recombinant CHO cell line producing a C-terminal a-amidating enzyme. Cytotechnology 1998; 26:153-164.

107. Jorjani P, Ozturk SS. Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol Bioeng 1999; 64:349-356.

108. Donaldson M, Wood HA, Kulakosku PC, Shuler ML. Glycosylation of a recombinant protein in the Tn5Bl-4 insect cell line: influence of ammonia, time of harvest, temperature, and dissolved oxygen. Biotechnol Bioeng 1999; 63:255-262.

109. Gramer MJ. Measurement of cell-culture gycosidase activity. In: Jenkins N, ed. Animal Cell Biotechnology. Vol. 8. Totowa, NJ: Humana Press, Inc., 1999:289-298.

110. Goochee CF, Gramer MJ. Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog 1993; 9:366-373.

111. Goochee CF, Gramer MJ. Glycosidase activities of the 293 and NS0 cell lines and of an antibody-producing hybridoma cell line. Biotechnol Bioeng 1994; 43:423-428.

112. Gramer MJ, Goochee C, Chock VY, Brousseau DT, Sllwkowski MB. Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Biotechnology 1995; 13:692-698.

113. Munzert E, Muthing J, Buntemeyer H, Lehmann J. Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effect on recombinant human antithrombin III integrity. Biotechnol Prog 1996; 12:559-563.

114. Ferrari J, Gunson J, Lofgren J, Krummen L, Warner TG. Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 1998; 60:589-595.

115. Kratje RB, Lind W, Wagner R. Evaluation of the proteolytic potential of in vitro cultivated hybridoma and recombinant mammalian cells. J Biotechnol 1994; 32:107-125.

116. Satoh M, Hosoi S, Sato S. Chinese hamster ovary cells continuously secrete a cysteine endopeptidase. In Vitro Cell Dev Biol Anim 1990; 26:1101-1104.

117. Froud SJ, Clements GJ, Doyle ME, Harris ELV, Lloyd C, Murray P, Preneta A, Stephens PE, Thompson S, Yarranton GT. Development of a process for the production of HIV 1 gpl20 from recombinant cell lines. In: Meignier B, ed. Production of Biological from Animal Cells in Culture. London: Butterworth-Heinemann, 1991:110-115.

118. Cartwright T. Adjusting cellular metabolism for optimum product yield. In: Animal Cells as Bioreactors: Cambridge Studies in Biotecnology. Vol. 11. Cambridge, U.K.: Cambridge University Press, 1994:96-111.

119. Goldman MH, James DC, Rendall M, Ison AP, Hoare M, Bull AT. Monitoring recombinant human interferon-g N-glycosylation during perfused fluidized-bed and stirred-tank batch culture of CHO cells. Biotechnol Bioeng 1998; 60:596-607.

120. Parekh RB, Patel TP. Comparing the glycosylation patterns of recombinant glycoproteins. TIBTECH 1992; 10:276-280.

121. Merry T. Current techniques in protein glycosylation analysis: a guide to their application. Acta Biochim Pol 1999; 46:303-314.

122. Geyer H, Geyer R. Strategies for glycoconjugate analysis. Acta Anat 1998; 161:18-35.

O'Neill RA. Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. J Chromatogr 1996; 720:201-215. Hu G-F. Fluorophore-assisted carbohydrate electropho-resis technology and applications. J Chromatogr 1995; 705:89-103.

Rudd PM, Dwek RA. Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr Opin Biotechnol 1997; 8:488-497.

Packer NH, Harrison MJ. Glycobiology and proteomics: is mass spectrometry the Holy Grail? Electrophoresis 1998; 19:1872-1882.

Pantazaki A, Taverna M, Vidal-Madjar C. Recent advances in the capillary electrophoresis of glycoproteins. Anal Chim Acta 1999; 383:137-156.

Kakehi K, Honda S. Analysis of glycoproteins, glycopeptides and glycoprotein-derived oligosaccharides by high-performance capillary electrophoresis. J Chromatogr 1996; 720:377-393.

Higgins E, Bernasconi R. A comparison of oligosaccharide profiling methods. Arland T, In: Hotchkiss J, eds. Techniques in Glycobiology. New York: Marcel Dekker, 1997:431-442.

Xu Y, Cacia J. A reversed-phase HPLC assay for plasminogen activators. J Liq Chromatogr Relat Technol 2000; 23:1841-1850.

Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 1999; 18:349-451.

Papac DI, Jones AJS, Basa LJ. Matrix-assisted laser desorption/ionization time-offlight mass spectrometry of oligosaccharides separated by high pH anion-exchange chromatography. In: Hotchkiss AT, ed. Techniques in Glycobiology. New York: Marcel Dekker, 1997:33-65.

Taverna M, Tran NT, Merry T, Horvath W, Ferrier D. Electrophoretic methods for process monitoring and the quality assessment of recombinant glycoproteins. Electro-phoresis 1998; 19:2572-2594.

Watson E, Yao F. Capillary electrophoretic separation of human recombinant erythro-poietin (rhuEPO) glycoforms. Anal Biochem 1993; 210:389-393. Takeuchi M, Taksaki S, Shimada M, Kobata A. Role of sugar chains in the in vitro biological activity of human erythropoietin produced in recombinant Chinese hamster ovary cells. J Biol Chem 1990; 265:12127-12130.

Friedman Y, Higgins EA. A method for monitoring the glycosylation of recombinant glycoproteins from conditioned medium, using fluorophore-assisted carbohydrate elec-trophoresis. Anal Biochem 1995; 228:221-225.

Yang M, Butler M. Enhanced erythropoietin heterogeneity in a CHO culture is caused by proteolytic degradation and can be eliminated by a high glutamine level. Cytotech-nology 2000; 34:83-99.

Kunkel JP, Jan DCH, Butler M, Jamieson JC. Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors. Biotechnol Prog 2000; 16:462-470.

Guttman A. Capillary gel electrophoresis of 8-aminopyrene-3,6,8-trisulfonate-labeled oligosaccharides. In: Arland T, Hotchkiss J, eds. Techniques in Glycobiology. New York: Marcel Dekker, 1997:377-389.

Kakehi K, Kinoshita M, Nakano M. Analysis of glycoproteins and the oligosaccharides thereof by high-performance capillary electrophoresis—significance in regulatory studies on biopharmaceutical products. Biomed Chromatogr 2002; 16:103-115. Wu SL. The use of sequential high-performance liquid chromatography and capillary zone electrophoresis to separate the glycosylated peptides from recombinant tissue plas-minogen activator to a detailed level of microheterogeneity. Anal Biochem 1997; 253:85-97.

Anumula KR. Highly sensitive pre-column derivatization procedures for quantitative determination of monosaccharides, sialic acids, and amino sugar alcohols of glycoproteins by reversed phase high-performance liquid chromatography. In: Arland T, Hotchkiss J, eds. Techniques in Glycobiology. New York: Marcel Dekker, 1997:349-357.

143. Wan HZ, Kaneshiro S, Frenz J, Cacia J. Rapid method for monitoring galactosylation levels during recombinant antibody production by electrospray mass spectrometry with selective-ion monitoring. J Chromatogr A 2001; 913:437-446.

144. Nimtz M, Martin W, Wray V, Kloppel K-D, Augustin J, Conradt HS. Structures of sialylated oligosaccharides of human erythropoietin expressed in recombinant BHK-21 cells. Eur J Biochem 1993; 213:39-56.

145. Geisow M. Electrospray ionization mass spectrometry—a powerful new analytical tool. Trends Biotechnol 1990; 8:301-303.

146. Rapp U, Resemann A, Mayer-Posner FJ, Schafer W, Feichtinger K. The fragmentation behavior of glycopeptides using the post-source decay technique and matrix-assisted laser desportion ionization mass spectrometry. In: Arland T, Hotchkiss J, eds. Techniques in Glycobiology. New York: Marcel Dekker, 1997:53-66.

147. Merkle RK, Poppe I. Carbohydrate composition analysis of glycoconjugates by gasliquid chromatography/mass spectrometry. Methods Enzymol 1994; 230:1-15.

148. Thomsson KA, Karlsson NG, Karlsson H, Hansson GC. Analysis of permethylated glycoprotein oligosaccharide fractions by gas chromatography and gas chromatogra-phy-mass spectrometry. In: Arland T, Hotchkiss J, eds. Techniques in Glycobiology. New York: Marcel Dekker, 1997:335-347.

149. Ohta M, Kawasaki N, Itoh S, Hayakawa T. Usefulness of glycopeptide mapping by liquid chromatography/mass spectrometry in comparability assessment of glycoprotein products. Biologicals 2002; 30:235-244.

150. Kawasaki N, Ohta M, Itoh S, Hyuga M, Hyuga S, Hayakawa T. Usefulness of sugar mapping by liquid chromatography/mass spectrometry in comparability assessments of glycoprotein products. Biologicals 2002; 30:113-123.

151. Raju TS, Nayak N, Briggs J, O'Connor JV, Lerner L. A convenient microscale color-metric method for teminal galactose on immunoglobins. Biochem Biophys Res Commun 1999; 261:196-201.

152. Stefansson M, Novotny M. Resolution of oligosaccharides in capillary electrophoresis. In: Arland T, Hotchkiss J, eds. Techniques in Glycobiology. New York: Marcel Dek-ker, 1997:409-430.

153. Wong-Madden ST, Landry D, Gutherie EP. Discovery and Uses of Novel Glycosi-dases. In: Arland T, Hotchkiss J, eds. Techniques in Glycobiology. New York: Marcel Dekker, 1997:401-408.

The Ketosis Plan Diet

The Ketosis Plan Diet

Top Low Carb Internet Guru Speaks Out. An Open Letter To Anyone Who Wants To Lose Up To 20 Pounds In 30 Days The 'Low Carb' Way. 30-Day Low Carb Diet 'Ketosis Plan' has already helped scores of people lose their excess pounds and inches faster and easier than they ever thought possible. Why not find out what 30-Day Low Carb Diet 'Ketosis Plan' can do for you by trying it out for yourself.

Get My Free Ebook

Post a comment