1. Ozturk SS. Cell culture technology—an overview. In: Ozturk SS, ed. Cell Culture Technology. New York: Taylor and Francis, 2005:1.

2. Wagner R. Metabolic control of animal cell culture processes. In: Hauser H, Wagner R, eds. Mammalian Cell Biotechnology in Protein Production. Berlin: Walter de Gruyter, 1997:193.

3. Haggstrom L. Cell metabolism, animal. In: Spier R, ed. Encyclopedia of Cell Technology. New York: John Wiley & Sons, 2000:392.

4. Pessin JE, Bell GI. Mammalian facilitative glucose transporter family. Structure and molecular regulation. Annu Rev Physiol 1992; 54:911.

5. Carruthers A. Facilitated diffusion of glucose. Physiol Rev 1990; 70:1135.

6. Craik JD, Elliot KRF. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepa-tocytes. Biochem J 1979; 182:503.

7. Gould GW, Thomas HM, Jess TJ, Bell GI. Expression of human glucose transporters in Xenopus oocytes. Kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 1991; 30:5139.

8. Kayano T, Fukumoto H, Eddy RL, Fan YS, Byers MG, Shows TB, Bell GI. Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. J Biol Chem 1988; 263:15245.

9. Kahn BB. Facilitative glucose transporters. Regulatory mechanisms and de-regulation in diabetes. J Clin Invest 1992; 89:1367.

10. Burant CF, Takeda J, Brot LE, Bell GI, Davidson NO. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 1992; 267:14523.

11. Waddell ID, Zomerschoe AG, Voice MW, Burchell A. Cloning and expression of a hepatic microsomal glucose transport protein. Biochem J 1992; 286:173.

12. Mancuso A, Sharfstein ST, Tucker SN, Clark DS, Blanch HW. Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 1994; 44:563.

13. Fitzpatrick L, Jenkins HA, Butler M. Glucose and glutamine metabolism of a B-lymphocyte hybridoma grown in batch culture. Appl Biochem Biotechnol 1993; 43:93.

14. Sharfstein ST, Tucker SN, Mancuso A, Blanch HW, Clark DS. Quantitative in vivo nuclear magnetic resonance studies of hybridoma metabolism. Biotechnol Bioeng 1994; 43:1059.

15. Petch D, Butler M. Profile of energy metabolism in a murine hybridoma: glucose and glutamine utilization. J Cell Physiol 1994; 161:71.

16. Neerman J, Wagner R. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 1996; 166:152.

17. Paredes C, Sanfeliu A, Cardenas F, Cairo JJ, Godia F. Estimation of the intracellular fluxes for a hybridoma cell line by material balances. Enzyme Microb Technol 1998; 23:1.

18. Jan DCH, Petch DA, Huzel N, Butler M. The effect of dissolved oxygen on the metabolic profile of a murine hybridoma grown in serum-free medium in continuous culture. Biotechnol Bioeng 1997; 54:153.

19. Larrabee MG. The pentose cycle. Rigorous evaluation of limits to the flux from glucose using I4CO2 data, with applications to peripherial ganglia of chicken embryos. J Biol Chem 1989; 264:15875.

20. Zupke C, Stephanopoulos G. Modelling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol Prog 1994; 10:489.

21. Bonarius HPJ, Ozemre A, Timmerarends B, Skrabal P, Tramper J, Schmid G, Heinzle E. Metabolix-flux analysis of continuously cultured hybridoma cells using 13CO2 mass spectrometry in combination with 13C-lactate nuclear magnetic resonance spectroscopy and metabolite balancing. Biotechnol Bioeng 2001; 74:528.

22. Renner ED, Plagemann PGW, Bernlohr RW. Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cells in suspension culture and its relationship to glucose metabolism. J Biol Chem 1972; 247:5765.

23. Reitzer LJ, Wice BM, Kenell D. Evidence that glutamine, not sugar, is the major energy source for cultivated HeLa cells. J Biol Chem 1979; 254:2669.

24. Miller WM, Blanch HW, Wilke CR. A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate and pH. Biotechnol Bioeng 1988; 32:947.

25. Portner R, Bohmann A, Lüdemann I, Markl H. Estimation of specific glucose uptake rates in cultures of hybridoma cells. J Biotechnol 1994; 34:237.

26. Miller WM, Wilke CR, Blanch HW. Transient responses of hybridoma cells to nutrient additions in continuous culture: I. Glucose pulse and step changes. Biotechnol Bioeng 1989; 33:477.

27. Sanfeliu A, Paredes C, Cairo JJ, Godia F. Identification of key patterns in the metabolism of hybridoma cells in culture. Enzyme Microb Technol 1997; 21:421.

28. Glacken MW, Fleischaker RJ, Sinskey AJ. Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 1986; 28:1376.

29. Hu WS, Dodge TC, Frame KK, Himes VB. Effect of glucose on the cultivation of mammalian cells. Dev Biol Stand 1987; 66:279.

30. Hayter PM, Curling EMA, Baines AJ, Jenkins N, Salmon I, Strange PG, Tong JM, Bull AT. Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant interferon-g. Biotechnol Bioeng 1992; 39:327.

Hayter PM, Curling EMA, Baines AJ, Jenkins N, Salmon I, Strange PG, Bull AT. Chinese hamster ovary cell growth and interferon production kinetics in stirred batch culture. Appl. Microbiol. Biotechnol 1991; 34:559.

Altamirano C, Illanes A, Casablancas A, Gamez X, Cairo JJ, Godia F. Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 2001; 17:1032.

Cruz HJ, Moreira JL, Carrondo MJT. Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotechnol Bioeng 1999; 66:104. Eigenbrodt E, Fister P, Reinacher M. New perspectives on carbohydrate metabolism in tumor cells. In: Baitner R, ed. Regulation of Carbohydrate Metabolism. Boca Raton: CRC Press, 1985:141.

Boxer GE, Devlin TM. Pathways of intracellular hydrogen transport. Science 1961; 134:1495.

Coleman PS, Lavietes BB. Membrane cholesterol, tumorigenesis and the biochemical phenotype of neoplasia. CRC Crit Rev Biochem 1981; 11:341.

Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar is the major source for cultured HeLa cells. J Biol Chem 1979; 254:2669.

Zielke HR, Zielke CL, Ozand PT. Glutamine: a major energy source for cultured mammalian cells. Fed Proc 1984; 43:121.

Trisch GL, Moore GE. Spontaneous decomposition of glutamine in cell culture media. Exp Cell Res 1962; 28:360.

Bode BP, Recent molecular advances in mammalian glutamine transport. J Nutr 2001; 131:2475S.

Schoolwerth AC, LaNoue KF. The role of microcompartmentation in the regulation of glutamate metabolism by rat kidney mitochondria. J Biol Chem 1980; 255:3403. McKeehnan WL. Glutaminolysis in animal cells. In: Morgan J, ed. Carbohydrate Metabolism in Cultured Cells. New York: Plenum Press, 1986:111. Prusiner S, Stadtman ER. The Enzymes of Glutamine Metabolism. New York: Academic Press, 1973.

Engstrom W, Zetterberg A. The relationship between purines, pyrimidines, nucleosides, and glutamine for fibroblast cell proliferation. J Biol Chem 1984; 218:607.

Vriezen N, van Dijken JP. Fluxes and enzyme activities in central metabolism of myeloma cells grown in chemostat culture. Biotechnol Bioeng 1998; 59:28.

Zupke C, Stephanopoulos G. Intracellular flux analysis in hybridomas using mass balances and in vitro 13C NMR. Biotechnol Bioeng 1995; 45:292.

Bonarius HPJ, Hatzimanikatis V, Meesters KPH, de Gooijer CD, Schmidt G,

Tramper J. Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 1996; 50:299.

Schoolwerth AC, LaNoue KF. Transport of metabolic substrates in renal mitochondria. Annu Rev Physiol 1985; 47:143.

Kilberg MS, Häussinger D. Mammalian Amino Acid Transport. Mechanisms and Control. New York: Plenum Press, 1992.

LaNoue KF, Schoolwerth AC. Metabolite transport in mitochondria. Annu Rev Bio-chem 1979; 48:871.

Masola B, Peters TJ, Evered DF. Transamination pathways influencing L-glutamine and L-glutamate oxidation by rat enterocyte mitochondria and the subcellular localization of L-alanine aminotransferase and L-aspartate aminotransferase. Biochim Biophys Acta 1985; 843:137.

McKeehan WL. Glycoslysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 1982; 6:635.

Piva TJ, McEvoy-Bowe E. Oxidation of glutamine in HeLa cells: role and control of truncated TCA cycles in tumour mitochondria. J Cell Biochem 1998; 68:213.

54. Moreadith RW, Lehninger AL. The pathway of glutamate and glutamine oxidation by tumor cell mitochondria: role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem 1984; 259:6215.

55. Evered DF, Masola B. The oxidation of glutamine and glutamate in relation to anion transport in enterocyte mitochondria. Biochem J 1984; 218:449.

56. Kovacevic Z, Brkljac O, Bajin K. Control and function of the transamination pathways of glutamine oxidation in tumour cells. Biochem J 1991; 273:271.

57. Haggstrom L. Energetics of glutaminolysis-a theoretical evaluation. In: Spier RE, Griffiths JB, Meignier B, eds. Production of Biologicals from Animal Cells in Culture. Oxford: Butterworth-Heinemann, 1991:79.

58. Martinelle K, Doverskog M, Jacobsson U, Chapman BE, Kuchel PW, Haggstrom L. Elevated glutamate dehydrogenase flux in glucose-deprived hybridoma and myeloma cells: evidence from *H/15N NMR. Biotechnol Bioeng 1998; 60:508.

59. Miller WM, Wilke CR, Blanch HW. The transient responses of hybridoma cells to nutrient additions in continuous culture: II. Glutamine pulse and step changes. Biotech-nol Bioeng 1989; 33:487.

60. Butler M, Spier RE. The effects of glutamine utilisation and ammonia production on the growth of BHK cells in microcarrier culture. J Biotechnol 1984; 1:187.

61. Jeong YH, Wang SS. Role of lutamine in hybridoma cell culture: effects on cell growth, antibody production, and cell metabolism. Enzyme Microb Technol 1995; 77:45.

62. Vriezen N, Romein B, Luyben KChAM, van Dijken JP. Effects of glutamine supply on growth and metabolism of mammalian cells in chemostat culture. Biotechnol Bioeng 1997; 54:272.

63. Mancuso A, Sharfstein ST, Fernandez EJ, Clark DS, Blanch HW. Effect of extracellular glutamine concentration on primary and secondary metabolism of a murine hybridoma: an in vivo 13C nuclear magnetic resonance study. Biotechnol Bioeng 1998; 57:172.

64. Ljunggren J, Haggstrom L. Catabolic control of hybridoma cells by glucose and glutamine limited fed batch cultures. Biotechnol Bioeng 1994; 44:808.

65. Meijer JJ, van Dijken JP. Effects of glucose supply on myeloma growth and metabolism in chemostat culture. J Cell Physiol 1995; 162:191.

66. Glacken MW, Adema E, Sinskey AJ. Mathematical description of hybridoma culture kinetics: I. Initial metabolic rates. Biotechnol Bioeng 1988; 32:491.

67. Flickinger MC, Goebel NK, Bibila T, Boycejacinso S. Evidence for posttranscriptional stimulation of monoclonal antibody secretion by L-glutamine during slow glutamine growth. J Biotechnol 1992; 22:201.

68. Linz M, Zeng AP, Wagner R, Deckwer WD. Stoichiometry, kinetics and regulation of glucose and amino acid metabolism of recombinant BHK cell line in batch and continuous cultures. Biotechnol Prog 1997; 13:453.

69. Schmid G, Keller T. Monitoring hybridoma metabolism in continuous suspension culture at the intracellular level. Cytotechnology 1992; 9:217.

70. Europa AF, Gambhir A, Fu PC, Hu WS. Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 2000; 67:25.

71. Follstad BD, Balcarcel RR, Stephanopoulos G, Wang DIC. Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotechnol Bioeng 1999; 63:675.

72. Lambert K, Pirt SJ. The quantitative requirements of human diploid cells (strain MRC-5) for amino acids, vitamins and serum. J Cell Sci 1975; 17:397.

73. Luan YT, Mutharasan R, Magee WE. Strategies to extend longevity of hybridomas in culture and promote yield of monoclonal antibodies. Biotechnol Lett 1987; 9:691.

74. Duval D, Demangel C, Munier-Jolain K, Miossec S, Geahel I. Factors controlling cell proliferation and antibody production in mouse hybridoma cells: I. Influence of the amino acid supply. Biotechnol Bioeng 1991; 38:561.

75. Jo EC, Park HJ, Park JM, Kim KH. Balanced nutrient fortification enables high density hybridoma cell culture in batch culture. Biotechnol Bioeng 1990; 36:717.

Simpson NH, Singh RP, Perani A, Goldenzon C, Al-Rubeai M. In hybridoma cell cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol Bioeng 1998; 59:90. Franek K, Srämkova K. Cell suicide in starving hybridoma culture: survival-signal effect of some amino acids. Cytotechnology 1997; 23:231.

Geaugey V, Duval D, Geahel I, Marc A, Engasser JM. Influence of amino acids on hybridoma cell viability and antibody secretion. Cytotechnology 1989; 2:119. Sanfeliu A, Cairo JJ, Casas C, Sola C, Godia F. Analysis of nutritional factors and physical conditions affecting growth and monoclonal antibody production of the hybridoma KB-26.5 cell line. Biotechnol Prog 1996; 12:209.

Lazo PA. Amino acids and glucose utilization by different metabolic pathways in ascites-tumour cells. Eur J Biochem 1981; 117:19.

Castagna M, Shayakul Ch, Trotti D, Franca Sacchi V, Harvey WR, Hediger MA. Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis. J Exp Biol 1997; 200:269.

Mizrahi A. Oxygen in human lymphoblastoid cell line cultures and effect of polymers in agitated and aerated cultures. Dev Biol Stand 1984; 55:93.

van der Valk P, Gille JJP, Oostra AB, Roubos EW, Sminia T, Joenje H. Characterization of an oxygen-tolerant cell line derived from Chinese hamster ovary. Cell Tissue Res 1985; 239:61.

Phillips HA, Scharer JM, Bols NC, Moo-Ypung M. Effects of oxygen on antibody productivity in hybridoma culture. Biotechnol Lett 1987; 9:745.

Miller WM, Wilke CR, Blanch HW. Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture. J Cell Physiol 1987; 132:524. Ozturk SS, Palsson BO. Effects of dissolved oxygen on hybridoma cell growth, metabolism and antibody production kinetics in continuous culture. Biotechnol Prog 1990; 6:437.

Jan DCH, Petch DA, Huzel N, Butler M. The effect of dissolved oxygen on the metabolic profile of a murine hybridoma grown in serum-free medium in continuous culture. Biotechnol Bioeng 1997; 54:153.

Zupke C, Sinskey AJ, Stephanopoulos G. Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl Microbiol Biotechnol 1995; 44:27. Oiler AR, Buser CW, Tyo MA, Thilly WG. Growth of mammalian cells at high oxygen concentrations. J Cell Sci 1989; 14:43.

Cacciuttolo MA, Trinh L, Lumpkin JA, Rao G. Hiperoxya induces DNA damage in mammalian cells. Free Radic Biol Med 1993; 14:267.

Jorjani P, Ozturk SS. Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol Bioeng 1999; 64:349. Schmelzer AE, Miller WM, Dezengotita VM, Abston LR. Environmental effects on cell physiology and metabolism: response to elevated pCO2. In: Lindner-Olsson E, Chatzissavidou N, Lüllau E, eds. Animal Cell Technology: from Market to Target. Dordrecht: Kluwer Academic Publishers, 2001:121.

Zanghi JA, Schmeltzer AE, Mendoza TP, Knop RH, Miller WM. Bicarbonate concentration and osmolality are key determinants in the inhibition of CHO cell polysialyla-tion under elevated pCO2 or pH. Biotechnol Bioeng 1999; 65:182. deZengotita VM, Kimura R, Miller WM. Effects of CO2 and osmolality on hubridoma cells: growth, metabolism and monoclonal antibody production. Cytotechnology 1998; 28:213.

Gray DR, Chen S, Howarth W, Inlow D, Maiorella, BL. CO2 in large-scale and high-density CHO cell perfusion culture. Cytotechnology 1996; 22:65. Matanguihan R, Sajan E, Zachariou M, Olson C, Michaels J, Thrift J, Konstantinov K. Solution to the high dissolved CO2 problem in high density perfusion culture of mammalian cells. In: Lindner-Olsson E, Chatzissavidou N, Lüllau E, eds. Animal Cell

Technology: from Market to Target. Dordrecht: Kluwer Academic Publishers, 2001:399.

97. Ozturk SS, Riley MR, Palsson BO. Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng 1992; 39:418.

98. Omasa T, Higashiyama K, Shioya S, Suga K. Effects of lactate concentration on hybridoma culture in lactate-controlled fed-batch operation. Biotechnol Bioeng 1992; 39:556.

99. Bibila TA, Ranucci CS, Glazomitsky K, Buckland BC, Aunins JG. Monoclonal antibody process development using medium concentrates. Biotechnol Prog 1994; 10:87.

100. Zhou W, Chen CC, Buckland BC, Aunins JG. Fed-batch culture of recombinant NSO myeloma cells with high monoclonal antibody production. Biotechnol Bioeng 1997; 55:783.

101. deZengotita VM, Miller WM, Aunins JG, Zhou W. Phosphate feeding improves high-cell-concentration NSO myeloma culture performance for monoclonal antibody production. Biotechnol Bioeng 2000; 69:566.

102. Glacken MW. Catabolic control of mammalian cell culture. Bio/Technology 1988; 6:1041.

103. McQueen A, Bailey JE. Effect of ammonium ion and extracellular pH on hybridoma cell metabolism and antibody production. Biotechnol Bioeng 1990; 35:1067.

104. Kurano N, Leist C, Messi F, Kurano S, Fiechter A. Growth behavior of Chinese hamster ovary cells in a compact loop reactor. 2. Effects of medium components and waste products. J Biotechnol 1990; 15:113.

105. Ryll T, Valley U, Wagner R. Biochemistry of growth inhibition by ammonium ions in mammalian cells. Biotechnol Bioeng 1994; 44:184.

106. Hassell T, Gleave S, Butler M. Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 1991; 30:29.

107. Yang M, Butler M. Effects of ammonia on CHO cell growth, erythropoietin production, and glycosilation. Biotechnol Bioeng 2000; 68:370.

108. Hansen HA, Emborg C. Influence of ammonium on growth, metabolism and productivity of a continuous suspension Chinese hamster ovary cell culture. Biotechnol Prog 1994; 10:121.

109. Miller WM, Wilke CR, Blanch HW. Transient response of hybridoma cells to lactate and ammonia pulse and step changes in continuous culture. Bioprocess Eng 1988; 35:113.

110. Newland M, Kamal MN, Greenfield PF, Nielsen LK. Biotechnol Bioeng 1994; 43:434.

111. McQueen A, Bailey JE. Growth inhibition of hybridoma cells by ammonium ion: correlation with effects on intracellular pH. Bioprocess Eng 1991; 6:49.

112. Schneider YJ, Marison IW, Stockar U. The importance of ammonia in mammalian cell culture. J Biotechnol 1996; 46:161.

113. Andersen DC, Goochee CF. The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Bio-technol Bioeng 1995; 47:96.

114. Borys MC, Linzer DIH, Papoutsakis ET. Ammonia affects the glycosylation pattern of recombinant mouse placental lactogen-I by Chinese hamster ovary cells in a pH-dependent manner. Biotechnol Bioeng 1994; 43:505.

115. Thorens B, Vassalli P. Chloroquine and ammonium chloride prevent terminal glycosy-lation of immunoglobulins in plasma cells without affecting secretion. Nature 1986; 321:618.

116. Gawlitzek M, Valley U, Wagner R. Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 1998; 57:518.

117. Ronning OW, Schartum M, Winsnes A, Lindberg G. Growth limitation in hybridoma cell cultures: the role of inhibitory or toxic metabolites. Cytotechnology 1991; 7:15.

118. Bibila TA, Robinson DK. In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 1995; 11:1.

Zhou W, Chen CC, Buckland B, Aunins J. Fed-batch culture of recombinant NSO myeloma cells with high monoclonal antibody production. Biotechnol Bioeng 1997; 55:783.

Xie L, Wang DIC. High cell density and high monoclonal antibody production through medium design and rational control in a bioreactor. Biotechnol Bioeng 1996; 51:725. Sauer PW, Burky JE, Wesson MC, Sternard LQ. A high yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng 2000; 67:585.

Konstantinov KB. Monitoring and control of the physiological state of cell cultures. Biotechnol Bioeng 1996; 52:271.

Ozturk SS. Engineering challenges in high density bioreactors. Cytotechnology 1999; 64:349.

Christie A, Butler M. Glutamine-based dipeptides are utilized in mammalian cell culture by extracellular hydrolysis catalyzed by a specific peptidase. J Biotechnol 1994; 37:277.

Holmlund AC, Chatzisavido N, Bell SL, Lindner-Olsson E. Growth and metabolism of recombinant CHO cell-lines in serum-free medium containing derivatives of glutamine. In: Spier RE, Griffiths JB, Macdonald C, eds. Animal Cell Technology: Developments, Processes and Products. Oxford: Butterworth-Heinemann, 1992:176. Hassell T, Butler M. Adaptation to non-ammoniagenic medium and selective substrate feeding lead to enhanced yields in animal cell cultures. J Cell Sci 1990; 96:501. Christie A, Butler M. The adaptation of BHK cells to a non-ammoniagenic glutamate-based culture medium. Biotechnol Bioeng 1999; 64:298.

Wagner A, Marc A, Engasser JM, Einsele A. Growth and metabolism of human tumor kidney cells on galactose and glucose. Cytotechnology 1991; 7:7. Marquis CP, Barford JP, Harbour C, Fletcher A. Carbohydrate and amino acid metabolism during batch culture of a human lymphoblastoid cell line BTSN6. Cytotechnol-ogy 1996; 21:121.

Altamirano C, Paredes C, Cairo JJ, Godia F. Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog 2000; 16:69.

Stephanopoulos G, Valllino JJ. Network rigidity and metabolic engineering in metabolite overproduction. Science 1991; 252:1675.

Paredes C, Prats E, Cairo JJ, Azorin F, Cornudella LI, Godia F. Modification of glucose and glutamine metabolism in hybridoma cells through metabolic engineering. Cytotechnology 1999; 30:85.

Scherczinger CA, Yates AA, Knecht DA. Variables affecting antisense RNA inhibition of gene expression. In: Baserga R and Denhart DT, eds. Antisense Strategies. New York: Academy of Sciences1992:660:45.

Chen K, Liu Q, Xie L, Sharp PA, Wang DIC. Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production. Biotechnol Bioeng 2001; 72:55.

Irani N, Wirth M, van den Heuvel J, Wagner R. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmatic pyruvate carboxylase reaction. Biotechnol Bioeng 1999; 66:238.

Bell SL, Bebbington CR, Scott MF, Vardell JN, Spier RE, Bushell ME, Sanders PG. Genetic engineering of hybridoma glutamine metabolism. Enzyme Microb Technol 1995; 17:98.

Robinson DK, Chan CP, Yu I, Tsai PK, Tung J, Seamans TC, Lenny AB, Lee DK, Irwin J, Silberklang M. Characterization of a recombinant antibody produced in the course of a high yield fed-batch process. Biotechnol Bioeng 1994; 44:727. Zhou W, Rehm J, Hu WSh. High viable cell concentration fed-batch cultures of hybridoma cells through on-line nutrient feeding. Biotechnol Bioeng 1995; 46:579.

How To Boost Your Metabolism

How To Boost Your Metabolism

In The Next 45 Minutes You're Going To Discover How To Boost Your Metabolism And Lose Weight. Who Else Wants To Boost Their Metabolism And Shed Pounds Fast?

Get My Free Ebook

Post a comment