false negative observations

480 true negative observations

400 persons with X

600 persons without X

Positive predictive value = —a— = -true positives (360)-x 100 = 75%

Thus, 3 out of 4 of the persons with positive observations really have the disease, and 1 out of 4 does not.

By a similar calculation, you can determine the probability that a negative observation is a true negative. The results here are reasonably reassuring to the involved patient:

Negative predictive value = —d— = —true negatives (480)— x 100 = 92%

As prevalence of the disease in a population diminishes, however, the predictive value of a positive observation diminishes remarkably, while the predictive value of a negative observation rises further. In Example 2, in a second population, B, of 1000 people, only 1% have disease X. Now there are only 10 cases of X and 990 people without X. If this population is screened with the same observation, which has a 90% sensitivity and an 80% specificity, here are the results:

Example 2. Prevalence of Disease X = 1%

Disease X Present Absent


Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook

Post a comment